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Abstract

If transitory profitable trading opportunities exist, filter rules are used to mitigate transaction costs. We

use a dynamic programming framework to design an optimal filter which maximizes after-cost expected

returns. The filter size depends crucially on the degree of persistence of trading opportunities, transaction

cost, and standard deviation of shocks. Applying our theory to daily dollar-yen exchange trading, we

find that the optimal filter can be economically significantly different from a naïve filter equal to the

transaction cost. The candidate trading strategies generate positive returns that disappear after

accounting for transaction costs. However, when the optimal filter is used, returns after costs remain

positive and are higher than for naïve filters.
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1. Introduction

It is inarguable that opportunities for above-normal returns are available to market participants at some

level. These opportunities may be exploitable for instance at an intra-daily frequency as a reward for

information acquisition when markets are efficient, or at a lower frequency, to market timers when

markets are inefficient. By nature these profit opportunities are predicable but transitory, and transaction

costs may be a major impediment in exploiting them.1 This paper explores the optimal trading strategy

when transitory opportunities exist and transactions are costly.

The model we present is applicable to the arbitraging of microstructure inefficiencies that require frequent

and timely transactions, which may be largely riskless. An example is uncovered interest speculation in

a currency market where a trader takes either one side of the market or the reverse. Alternatively, a

trader arbitrages differences between a stock’s return and that of one of its derivatives: going long on

the arbitrage position or reversing the position and going short. The model also applies to momentum or

contrarian trading when these phenomena may reflect inefficiencies due to cognitive biases.

Starting with Fama and Blume (1966), trading rules often involve a “filter” that prompts one to trade only

if a realization exceeds a benchmark by a certain percentage. For instance in foreign exchange trading

an x% filter might stipulate that a currency be purchased if its current exchange value exceeds some

moving average of its past values by more than the x% “band”. Presumably, such a filter reduces

trading and thus transaction costs. The idea is that if the trade indicator is “weak” the expected return

from the transaction may not compensate for the transaction cost. Knez and Ready (1996) and Cooper

(1999), for instance, explore different filters and find that the after-transaction-cost returns improve

compared to trading strategies with zero filter. The problem with the filter approach is that there is no

way of knowing a priori which filter band would be reasonable, since the buy/sell signal and the transaction

cost are not in the same units. This also implies that there is no discipline against data mining for

researchers: a large number of filters with different bands can be tried until the strategy generates

positive net returns.

The purpose of this paper is to design an optimal filter that maximizes the expected return net of

transaction cost. To accomplish this we employ a “parametric” approach (see for instance Balvers, Wu,

and Gilliland, 2000) that allows the trading signal and the transaction cost to be in the same units. In

effect we convert a filter into returns space and then are able to derive the filter’s optimal band. The

optimal filter depends on the exact balance between maintaining the most profitable transactions and

minimizing the transactions costs.

The optimal filter (band) can be no larger than the transaction cost (plus interest). This is clear because

there is no reason to exclude trades that have an immediate expected return larger than the transaction

cost. In general the optimal filter is significantly smaller than the transaction cost. This occurs when the

expected return is persistent: even if the immediate return from switching is less than the transaction

1 For instance, Grundy and Martin (2001) express doubt that the anomalous momentum profits survive transaction costs, and
Hanna and Ready (2001) find that the momentum profits are substantially reduced when transactions costs are accounted
for. Lesmond, Schill, and Zhou (2004) conclude more strongly that momentum profits with transactions costs are illusory.
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cost, the persistence of the expected return makes it likely that an additional return is foregone in future

periods by not switching. Roughly, the filter must depend on the transaction cost as well as a factor

related to the probability that a switch occurs. Our model characterizes the determinants of the filter in

general and provides an exact solution for the filter under the assumption of changes in expected

returns being uniformly distributed.

In exploring the effect of transaction costs when returns are predictable, this paper has the same objective

as Balduzzi and Lynch (1999), Lynch and Balduzzi (2000), and Lynch and Tan (2002).2  The focus of

these authors, however, differs significantly from ours in that they consider the utility effects and portfolio

rebalancing decisions, respectively, in a life cycle portfolio choice framework. They simulate the welfare

cost and portfolio rebalancing decisions given a trader’s constant relative risk aversion utility function,

but they do not provide analytical solutions and it is difficult to use their approach to quantify the optimal

trading strategies for particular applications. Our approach, in contrast, provides specific theoretical

results yielding insights into the factors affecting optimal trading strategies. Moreover our results can be

applied based on observable market characteristics that do not depend on subjective utility function

specifications.

In contrast to Balduzzi and Lynch, Lynch and Balduzzi, and Lynch and Tan, we sidestep the controversial

issue of  risk in the theory . This simplifies our analysis considerably and is reasonable in a variety of

circumstances. First, we can think of the raw returns as systematic-risk-adjusted returns, with whichever

risk model is considered appropriate. The systematic risk adjustment is sufficient to account for all risk

as long as trading occurs at the margins of an otherwise well-diversified portfolio. Second, in particular

at intra-daily frequencies, traders may create arbitrage positions so that risk is irrelevant. Third, in many

applications risk considerations are perceived as secondary compared to the gains in expected return;

if risk adjustments are relatively small so that the optimal trading rules are approximately correct then

risk corrections can be safely applied to ex post returns.

Our framework implies that trading strategy returns using the optimal filter should be smaller than the

returns when transaction costs are ignored but larger than for any other filter strategy with transaction

costs, in particular those for which the filter is zero percent or equal to the transaction cost. We apply

our optimal filter to a natural case for our model: daily foreign exchange trading in the yen/dollar market.

As is well-known (see for instance Sweeney, 1986; LeBaron, 1998; and Qi and Wu, 2002), simple moving-

average trading rules generate positive expected returns (with or without risk adjustment) in the foreign

exchange market. However, for daily trading, returns net of transaction costs are negative or insignificant

if no filter is applied.

We find that for the optimal filter the net returns are still significantly positive and higher than those when

the filter is set equal to the transaction cost. Furthermore, the optimal filter derived from the theory given

a uniform distribution and two optimal filters derived numerically under normality and bootstrapping

2 There is a far more extensive literature considering investment choices under transaction costs when returns are not predictable.
See Liu and Loewenstein (2002) and Liu (2004) for recent examples. Marquering and Verbeek (2004) assume predictability
and adjust for transactions costs. Their approach, however, is a complement to ours in that they integrate risk into the optimal
switching choice while accounting for transactions costs after the fact, whereas our approach integrates transactions costs
into the optimal switching choice while accounting for risk after the fact.
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assumptions all generate similar results that are, moreover, relatively close to the ex post maximizing

filter for actual data. These results are important as they suggest an approach for employing trading

strategies with filters to deal with transactions cost, without leading to excessive data mining. The

results also hint that in some cases conclusions of abnormal profits disappearing after accounting for

transaction costs may be worth revisiting.

The next section develops the theoretical model and provides a general characterization of the optimal

filter for an ARMA(1,1) returns process with general shocks, as well as a specific formula for the case

when the shocks follow the uniform distribution. In section 3, we apply the model to uncovered currency

speculation. We show first that the moving-average strategy popular in currency trading can be related

to our ARMA(1,1) specification. We then use the first one-third of our sample to develop estimates of the

returns process which we employ to calculate the optimal filter for an AR(1), an ARMA(1,1), and two

representative MA returns processes. The optimal filter is obtained from the theoretical model for the

uniform distribution but also numerically for the normal distribution and the bootstrapping distribution.

Section 4 then conducts the out-of-sample test with the final two-thirds of our sample to compare mean

returns from a switching strategy before and after transaction costs. The switching strategies are

conducted under a variety of filters, including the optimal ones, for each of the AR(1),  ARMA(1,1), and

MA returns cases. Section 5 concludes the paper.

2. The Theoretical Model

2.1 Autoregressive Conditional Returns and Two Risky Assets

An individual investor attempts to maximize the discounted expected value of an investment over the

infinite horizon. There is a proportional transaction cost and the investor chooses in each period between

two assets that have autocorrelated mean returns. The two assets are treated symmetrically in that

shorting asset 1 is equivalent to holding asset 2 and vice versa. Each period, the investor is assumed to

take a notional $1 long position in one asset and a notional $1 short position in the other asset. As an

example, one can consider a hedge fund which allocates a given pool of funds and distributes the gains

in each period back to the shareholders.

The problem can be solved by using an autonomous stochastic dynamic programming approach with

state variables indicating: (1) the asset currently held (asset 1 or 2), and (2) the variables summarizing

the state of the forecast variable, , that characterizes the persistent part in the returns of assets 1 and

2;  is assumed to follow an ARMA(1,1) process as a parsimonious parameterization of mild return

predictability. The solution is characterized in general and is given in closed form when the shock to

expected return is uniformly distributed.

The decision problem is as follows:

for
 

(1)
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subject to:

(2)

where  is the discount rate. The disturbance term  is assumed to have a symmetric and unimodal

probability density function denoted by . Each period, the investor chooses whether to invest a

fixed amount (one unit) in asset 1 or asset 2 (  equals 1 or 2). A transaction cost c is incurred whenever

there is a switch from one asset to the other.3 The return of asset  is given by , with a

distribution that is time-varying based on the autoregressive state variable  described by equation (2);

 is white noise. Thus, the value function at time  depends on the state as given by the holdings of

asset  and the variables describing the distribution of , namely  and . It equals the expected

return depending on current asset holdings plus the discounted expected value in the next period which

depends on the return state variable  as well as the choice of holdings after  is revealed and minus

the up-front adjustment cost that is incurred when asset holdings are switched from  to .

The optimal asset choice depends purely on the difference between the two assets rather than on their

common levels. Hence, we can specify parsimoniously and with little loss of generality:

(3)

The implied general restrictions on the  are that  and

 with  time-invariant but otherwise unrestricted. To rule out

unbounded profits, it is sufficient to assume that  is finite for all .

It is now convenient to define the “difference-in-value” function:

(4)

where the conditional expected excess return  is defined in equation (3) and its expression is obtained

from equation (2). Note that due to risk neutrality the “difference-in-value” function gives the “value of

the difference”, i.e., the optimized value from a long-short strategy. The Appendix shows formally that

the one state variable  is sufficient to capture the dynamics related to the difference-in-value function.

The Appendix also shows that equation (4) for the difference between holding asset 2 and holding asset

1 can be written as:

(5)

with

(6)

3 Given the assumed risk neutrality, symmetry, and proportional transaction costs, intermediate positions, with investment in
both assets or neither asset, are never optimal.
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as follows from equation (2).

The optimal choice of the critical values  and  is found by differentiating the right-hand side of

equation (5) using Leibniz’s rule, and is given by

(7)

and

(8)

Intuitively, in equation (7), the investor is indifferent between switching assets and continuing to hold

asset 1 if the discounted gain in value from switching is exactly equal to the up-front transaction cost.

Equation (8) has a similar interpretation. Inverting the difference-in-value function yields for the critical

values  and .

Given equations (1) and (4) and the symmetry of the error density we have

(9)

Thus, given equation (7), (8), and (9), we have

(10)

Defining the critical mean returns,  and , as  and , we have

. Hence, although the critical shocks  and  are time dependent, the

critical mean excess returns are constant over time. Given that  and 

(11)

Summarizing and expanding the above results, the Appendix proves the following:

Proposition 1. For the decision problem in equations (1) – (3) and the definitions of  and 

above and given that  has unbounded support:

(a) For  and 

(b)

(c)  unique

(d)

(e) The investor buys asset 2 and shorts asset 1 if  and vice versa if . If

, the current position is maintained.

Proof. See Appendix.
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Result (a) implies that, if profit opportunities have positive persistence, then the value function has a

slope that is everywhere larger than one and is concave for positive  and convex for negative

. The slope exceeds one because an increase in the expected return difference has an

immediate one-to-one effect on the differential between holding asset 2 and holding asset 1 plus an

additional future positive effect due to the persistence of the expected return differential that applies if

there is no switching which happens with positive probability. The concavity (convexity) for

 arises because the higher the expected return differential is, the more incentive there

is for the trader to switch from the asset with the lower mean to that with the higher mean at the fixed

transaction cost, thus mitigating the expected return difference between the two positions.

Using an induction argument and the symmetry of  in equation (2), result (b) follows. The reason is

the symmetry of the two assets: holding asset 1 given mean return difference of  is no different from

holding asset 2 given mean return difference of .

Given the larger than unitary slope of the excess value function it follows that there is exactly one

bounded value of  so that equation (7) holds. Result (c) also states that  must be positive. This is so

because  from result (b) so that the positive slope of  implies that equation (7) can only hold

at ; similarly, the larger than unitary slope of  implies that equation (7) can only hold at

. Figure 1 illustrates the results in Proposition 1 for the empirically relevant case when

 and .

Redefine the last two terms on the right-hand side of equation (5) for convenience, using Proposition

1d:

(12)

By converting from the left tail of the distribution to the right tail, we can write:

(13)

The term  is interpreted as the expected transaction costs due to switching from asset 1 to

asset 2 minus the expected transaction cost due to switching from asset 2 to asset 1.

The term  indicates the average difference in the next period’s value from holding asset 2

compared to holding asset 1, in the region where switching is not optimal, so that any expected return

differential persists:

(14)
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 is evaluated from  to . Thus, given the symmetry of  in Figure 1, the sign of 

depends on the shape of the density function. For  the positive part of  is weighted more than

the negative part if the density is symmetric and unimodal (and vice versa for ). Thus,  is

positive for  unless the density function is flat (as is the case for the uniform distribution) in which

case  is zero.

Evaluating  at the critical expected return difference , using equations (7) and (12) gives:

(15)

Intuitively, equation (15) indicates the expected excess return from holding asset 2 instead of asset 1 at

which the investor is indifferent between staying with asset 1 or switching to asset 2, , to be equal to

the up-front transaction cost with interest plus the expected transaction cost at state  of switching

back in the next period from asset 2 to 1 minus the expected transaction cost of not switching initially

but switching anyway in the next period.

2.2 Comparative Statics Results

Given equation (15) or equation (7) characterizing the critical mean return differential and equation (5)

stating the difference-in-value function, it is possible to derive the comparative statics results for all of

the parameters in the model of equations (1) - (3).  Note that to conduct the comparative statics in the

last case we introduce a shift variable in equation (2) so that  , with

 and . We also restrict  to consider the case of positive persistence in profit

opportunities and restrict  for convenience and because this is the empirically relevant case in

the application to follow.

Proposition 2. For  and , the comparative statics results for the model of equations

(1) - (3) are

(a) For the critical mean excess return :

(b) For the probability of no transaction at time t (assuming without loss of generality that the

current position is long asset 1 and short asset 2),  , where 

represents a generic parameter:
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Proof.  Part (a) follows from equations (5) and (7). Write equation (7) as , then

. Straightforward but tedious differentiation using

Leibniz’s rule, applied to equation (5) then provides the result for each parameter . Part (b) follows

similarly considering that  .

The intuition for the first two results is that an increase in transaction costs or an increase in the discount/

interest rate both make it more costly to adjust assets, causing the critical mean return differential to be

higher to give more of an advantage to current holdings before switching occurs. Thus, the probability

of no switch increases.

An increase in persistence of the mean return differential , keeping constant the difference  leads

to a quicker adjustment: even if the current mean return differential foregone by not switching is currently

fairly small, a larger part of it is likely to persist in future periods as follows from equation (6), implying a

larger total gain from switching now. The negative effect on the probability of no transaction is reinforced

when  because an increase in  further implies that any current  is more persistent, increasing

the chance that a shock in the next period exceeds a given critical mean; when , however, the

effect of  on the probability becomes ambiguous.

An increase in  for a given  raises the critical mean return differential. The reason follows from

equation (6) which implies that the conditional expected return differential adjusts more rapidly with

larger  so that a given mean excess return is less of a signal for the future. The probability of no

transaction rises unambiguously if  since the direct effect of larger  is to lower the absolute

value of  raising the probability of no trade.

The level of the current conditionally expected excess return  has no impact on the critical expected

return differential. This is so because the realization of the expected return differential is sufficient to

capture the state, no matter what value  is, as follows by updating equation (6) by one period. The

probability of no transaction, on the other hand, is affected-it decreases since less of a shock will be

necessary to induce a transaction.

Lastly, an increase in the standard deviation of the innovation in the mean return differential raises the

critical mean return differential and the probability of no transaction. This effect is formally similar to an

increase in . Note that the ambiguity arises because the increase in standard deviation causes
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extreme changes in the mean return differential to become more likely, even though the increase in 

raises , making a switch less likely.

2.3 Closed Form Solution for Uniform Innovations

It is difficult to obtain an explicit analytical solution for the optimal filter in equation (15) because, from

equation (14), , depends on the value function which is of unknown functional form. However,

for the special case of a constant density over the relevant range (a uniform distribution), the 

term simplifies substantially, as shown in the following, so that an explicit solution can be obtained.

Assume a uniform distribution for  over the interval  with implied density . Proposition

1 requires minor modifications to apply in this case, which we omit for brevity, since the uniform distribution

is bounded and not strictly unimodal. Equation (13) becomes:

(16)

Equation (14) becomes:

(17)

Note that the Min and Max operators appear because  outside of the domain .

Proposition 3. If  is uniformly distributed over the interval  and

(18)

then the critical mean return differential in the model of equations (1) - (3) is given by

(19)

Proof. If , then the bounds in  and  are interior. Hence:

 by Proposition 1b and equation (17), and   from equation

(16). Equation (15) then implies equation (19).  Equations (18) and (19) in turn imply the premise that

.
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Note that the assumption of the uniform distribution leads to relatively high values for  because it

causes  to be equal to its minimum value.4 Equation (19) states that given  fixed, the

optimal filter as a fraction of the transaction cost (plus interest) depends negatively on the persistence

of the mean of the return process, : the trader should be willing to switch his position more readily

toward a profitable opportunity if it is likely to persist longer. Considering equation (6) and the fact that

for the uniform distribution , the optimal filter depends positively on the variability of the mean

of the return process, , scaled by the transactions cost,  : if the mean is highly variable compared

to the transaction cost, then a trader should require a higher immediate expected return before switching

since there is a higher chance that he may want to switch back soon.

3. Empirical Illustration for Foreign Exchange Trading: Optimal Filter
Calculation

The model developed in the preceding section can be interpreted in three different ways. First, if we

ignore the underlying  process in equation (2), the  in equation (6) may be interpreted as an excess

return that is fully known at time . Thus, we are dealing with a case of pure arbitrage where the trader

optimizes the after-transaction-cost excess return . In a fully efficient market we may then expect
 5. Second, we may think of  as the risk-adjusted expected excess return, the “alpha”, so

that positive  represents an average excess return adjusted for systematic risk. Similarly,  could

represent a particular expected utility level, which would also account for risk. Thirdly, we can interpret

 as an expected return in a case where risk is relatively small or non-systematic.  In this case, an

appropriate risk correction can simply be applied to the ex post returns. A minor drawback is that the

optimal filter has to be applied with unadjusted returns, but this is not a major issue if the risk adjustment

is small and would, anyway, bias results away from finding positive trading returns.

Empirically, it is difficult to find accurate data to examine the first interpretation, while the second

interpretation requires employing a particular risk model.  Accordingly, we adopt the third interpretation

of the theory in considering uncovered interest speculation in the dollar-yen spot foreign exchange

market.

4 It is possible to obtain a closed form solution for the value function as well, but this depends again on the domain of the

innovation distribution. In general:  for . The

condition on  guarantees that the bounds in  and  are interior. From equation (2):  .

Hence, the above equation applies to all possible states  only if , or if  

which requires that . Note however that, even if there is no simple expression for the value function for a range of values

of , if this equation is violated, it is still appropriate to obtain the critical value from equation (19) as long as equation (18) holds.

5 In fact, imposing this condition would give an alternative approach to estimating the transaction cost c if we assume that, in
an efficient market, the after-transaction-cost excess returns would be nonnegative (zero) only when using the optimal strategy.
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3.1 A Parametric Moving Average Trading Strategy

As discussed extensively in the literature, see for instance Frankel and Froot (1990), LeBaron (1998,

1999), Lee and Mathur (1996), Levich and Thomas (1993), Qi and Wu (2002), Sweeney (1986), and

others, profitable trading strategies in foreign exchange markets traditionally have employed moving-

average (MA) technical trading rules.6 MA trading rules of size  work as follows: calculate the moving

average using  lags of the exchange rate. Buy the currency if the current exchange rate exceeds this

average; short-sell the currency if the current exchange rate falls short of this average.

Defining  as the log of the current-period spot exchange rate level (dollar price per yen) and  as the

percentage appreciation of the yen, the implicit exchange rate forecasting model behind the MA trading

rule is

(20)

For any positive , equation (20) implies a positive expected exchange rate appreciation if the log of the

current exchange rate exceeds the N-period MA. Empirically, we find  to be positive in all our

specifications. Hence, the decision rule based on equation (20) to buy (short) the currency if the expected

appreciation is positive (negative) leads to a trading strategy equivalent to the MA trading strategy for

any positive value of  .7 In what follows, our strategy is to transform equation (20) to infer empirically a

value for  which, in addition to implying identical switch points as the MA rule, also provides a quantitative

estimate of the expected gain from switching that may be compared directly to the transactions cost.

The true distribution of the exchange rate can be very complex. Hsieh (1988, 1989) shows that daily

returns of exchange rates are not normally distributed, not i.i.d., and exhibit substantial nonlinearity and

GARCH effects. Therefore, the simple MA process (20) can only be an approximation of the true exchange

rate process. We are motivated to use the MA rule because it is the most popular rule studied by

researchers and used by practitioners. It is important to emphasize here that the primary purpose of this

paper is not per se to search for the best exchange rate forecasting model to generate trading profitability,

or to explain the potential profitability from certain trading strategies. But rather, the key point we want

to make is that given a data-generating process which exhibits mild return predictability, an optimal

transaction filter can be designed to maximize the after-cost expected profitability of a particular trading

strategy. The optimal filter size is conditioned on a specific exchange rate forecasting model and can be

easily computed using prior data. It is shown empirically below that the optimal filter can be significantly

smaller than the naïve filter equal to the transaction cost. The optimal filter will in general outperform the

naïve filters regardless of the specific return-generating process assumed.

6 The source of the excess returns from MA strategies in foreign exchange markets may be due to central bank intervention
designed to smooth exchange rate fluctuations. See for instance Sweeney (2000) and Taylor (1982).

7 Given equation (20) there is a clear link between the popular MA filters with a band and our filter.  An exchange rate such that
the moving average exchange rate is exceeded by x% induces a switch.  In our case, for a naïve filter equal to c, for instance,
we need  to induce a switch.  So, for the numbers we find in our empirical section for the MA(21) process, our naïve
filter corresponds to , a 4% band for the ad hoc filter.
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Equation (20) can straightforwardly be rewritten as an autoregressive process in the percentage change

in exchange rate:

(21)

where the coefficients in the autoregression are given by the Bartlett weights.

Typical studies on technical analysis of foreign exchange do not utilize information on interest rates in

computing the moving averages and do not estimate a parametric model for forecasting. To be fully

consistent with our theory, we want to treat the excess return as the variable to be forecasted in the

forecasting equation. To do so, we add the interest rate differential to the percentage change in exchange

rate, so that Equation (21) becomes:

(22)

where, ,  is the daily Japanese interest rate, and  is the daily U.S. interest

rate. In other words,  denotes the excess return from buying the Japanese yen and shorting the U.S.

dollar (or the deviation from uncovered interest parity).

In the presence of transaction costs, the MA rule needs to be supplemented with a filter that indicates

by how far the current spot rate must exceed (or fall short of) the MA in order to motivate a trade. The

advantage of equation (22) is that it is parametric and, given an estimate for , can provide a quantitative

measure of the filter based on comparing expected return to the transaction cost.

To obtain analytically the optimal filter for the MA criterion in the context of the model it is necessary that

equation (22) be translated to an ARMA(1,1) format, for which the model provides the optimal filter

(which is in a closed form expression if the  are uniformly distributed). LeBaron (1992), Taylor (1992),

and others have shown that an ARMA(1,1) well replicates moving average trading rule results. For the

remainder of the paper, we assume the parameter restriction  for the ARMA(1,1) process (2).

This restriction is satisfied for all our empirical specifications.

Inverting the ARMA(1,1) process of equation (2) yields an alternative autoregression:

(23)

Comparing equations (22) and (23) it follows that equation (23) is a good approximation for equation (22)

if we set  and if the  terms are close to the  for all . Taking a natural log approximation,

and choosing  to match the Bartlett weights:

(24)
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Thus, for a given N, we run regression (22) to obtain an estimate of . Then from  and

 , we can uniquely identify a  and  that provide a good ARMA(1,1) proxy for an MA-

based process with a relatively large N. In turn, the ARMA parameters allow us to calculate analytically

the critical expected return  governing the transaction choice.

3.2 Preliminary Dollar-Yen Process Estimates

Our data on the Japanese yen - U.S. dollar spot exchange rate cover the period from August 31, 1978

to May 3, 2003 with 6195 daily observations. Daily exchange rate data for the Japanese yen are

downloaded from the Federal Reserve’s webpage. For interest rates, we obtain Financial Times’ euro-

currency interest rates from Datastream International. The first 1/3 of the sample (2065 observations) is

used for model estimation. Out-of-sample forecasting starts on November 28, 1986 until the end of the

sample (4130 observations). We estimate the exchange rate dynamics in four ways: 1) an AR(1) process

(  in equation 2 is set equal to zero); 2) an ARMA(1,1) process (equation 2);  3) a process consistent with

an  MA rule of 21 lags (21 trading days in a month), as is commonly considered with daily data (equation

22); and 4) a process consistent with an MA rule of size 126 (half a year), which is around the size

typically used by traders, although results appear to depend little on the exact size of the MA process

chosen (LeBaron, 1998, 1999).

We choose these four models as our empirical illustration for the following reasons. Models 3 and 4 are

commonly employed by academics and practitioners. The ARMA(1,1) is the exact model assumed in

our theoretical derivation, while the AR(1) model is a more parsimonious specification and is a natural

candidate. It is important to reiterate that the primary purpose of this paper is not to search extensively

for the best possible models to predict exchange rates. Rather our main focus is to provide an ex ante

model-specific optimal filter for some popular models commonly used in academia and by practitioners

and to compare the performance of our theoretical optimal filter with other ad hoc filters.

Columns (1)-(5) of Table 1 show the results of the in-sample model estimation using the first 1/3 of our

sample for each way of capturing the exchange rate dynamics. For the AR(1) process we find low

persistence with  = 0.0548 and a standard error of  = 0.00659; for the ARMA(1,1) process we find

 = 0.918 and  = 0.880 with a standard error of  = 0.00658. Thus, both processes provide similar

accuracy although the parameters differ substantially.8 While the data cannot tell us clearly whether the

AR(1) or the ARMA(1,1) process is better at describing the exchange rate dynamics, we will see that the

implications for optimal trading are substantially different.9 For the representative moving average rule

with 21 lags we find for the slope in equation (22) that  = 0.0257 and  = 0.00656.  Since we have

N =21 we obtain from equation (24) that  = 0.979 and  = 0.954, which is not statistically distinguishable

from the direct estimates from the ARMA(1,1) model. The MA(126) process yields  = 0.00818 and

 = 0.00635, implying by approximation that  = 0.999 and  = 0.992.

8 Previous more elaborate research on this issue by LeBaron (1992) and Taylor (1992) on the other hand finds that , while the
ARMA(1,1) formulation does well, the AR(1) case is much poorer in replicating the key features of exchange rate series.

9 Balvers and Mitchell (1997) raise this issue in the context of optimal portfolio choice under return predictability.
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We assume a round trip transaction cost of  = 0.001 (10 basis points) throughout. Sweeney (1986) finds

a transaction cost of 12.5 basis points for major foreign exchange markets, but more recent work by

Bessembinder (1994), Melvin and Tan (1996), and Cheung and Wong (2000) finds bid-ask spreads for

major exchange rates between 5 and 9 basis points. To account for transaction costs in addition to

those imbedded in the bid-ask spread, related to broker fees and commissions, and the lending-borrowing

interest differential we use 10 basis points as a realistic number for the dollar-yen market. The daily U.S.

interest rate is on average over the first 1/3 of the sample equal to 0.000439 percent. This average

interest rate is used as a proxy for the discount rate  in computing the optimal filter in Equation (19).

As pointed out in the previous subsection, the true distribution of the exchange rate can be quite complex

(Hsieh, 1988, 1989), and we do not know a priori which distributional assumption is the best approximation.

Therefore we choose to estimate the optimal filter  using three methods. Firstly, under the assumption

that the error term  is uniformly distributed the optimal filter, denoted by , can be analytically calculated

using equation (19). Secondly,  is assumed to follow a normal distribution. In this case, the result in

equation (19) no longer holds, and we estimate the optimal filter, denoted by , through Monte-Carlo

simulation. Lastly, we do not make an assumption about the distribution of  and estimate the optimal

filter, denoted by , by bootstrapping the model residuals  with replacement.

3.3 The Optimal Filter Implied by the Theory under the Uniform Distribution

Under the assumption of a uniform distribution, we can obtain  from the relation . All the

information now is there to allow us to calculate the optimal filter from equation (19) for the dollar-yen

exchange rate. Column (6) of Table 1 provides the results. For the AR(1) case we find that the ratio of the

critical return to the transaction cost is  = 0.92. Hence, in this case the optimal filter is not very

different from a naïve filter that equals the transaction cost . The main reason is that, from equation (6),

the persistence in the mean return is small at  = 0.0548 so that, no matter what the current holdings

are, there is not much difference in future probabilities of trading.

On the other hand, for the ARMA(1,1) case with  = 0.918 and  = 0.880, we find that the optimal filter

is dramatically different at  = 0.32. The reason that this number is so much lower than under the

AR(1) case is clear from equation (6). The persistence is not only high now with  = 0.918 but it is also

high relative to the innovation in the conditional mean that is  = 0.038 . Hence, it is highly

likely that the exchange position (dollar or yen) with the currently positive expected return is going to be

unchanged in the near future.

For the 1-month MA process, the parameters backed out from the MA(21) model yield  = 0.23.

Note that inequality (18) is violated, as is necessary when  < 0.50, implying that the analytical value

obtained from equation (19) is no longer accurate and must be viewed as a good approximation, hence

it is more precise to state that  0.23. Intuitively, the slow adjustment in the conditional mean for

these parameter values implies that, in some cases, even the most extreme realization of the exchange

rate innovation would not be sufficient to induce switching.  Hence, one would be certain of avoiding

transaction costs for at least one period (and likely more) by buying or keeping the exchange with the

positive expected return. This explains of course the low value of the critical expected return relative to

the transaction cost.
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The 6-month MA process, MA(126) yields the smallest filter,  = 0.083. One reason is the high

persistence of expected return (the implied persistence parameter  = 0.999). Another is the fact that by

nature the long MA process is very smooth so changes in the mean occur very slowly so that the

number of transactions is small, even when there is no filter. This is undoubtedly a reason for the

popularity of this particular trading rule with practitioners.

3.4 The Optimal Filter Obtained Numerically under the Normal Distribution

As a check on the dependence of the results on the uniform distribution, we also find the optimal filter

numerically using a Monte Carlo approach assuming normality and a bootstrapping approach.

Expected Trading Rule Returns under Normality

Under normality it is possible, and may help build some perspective and intuition, to consider some

ballpark figures of what mean returns should be expected, before and after transaction costs, based on

the predictability implied by the estimates of the returns process. Given normality, equation (6) tells us

that

(25)

Then the expected return given a trading strategy of switching between two currencies ignoring transaction

costs would equal the unconditional mean given truncation at zero, since the decision rule always

implies a switch to the one currency with a positive expected excess return. Following for instance

Maddala (1983, p.365) this truncated mean is given as  where  and  indicate

respectively the probability density function and cumulative distribution function of the standard normal,

and  represents the unconditional standard deviation of  which equals . Thus, multiplying

by 252 trading days to annualize:

(26)

Taking our parameter estimates and given that (0) = 0.399 we obtain for the AR(1) process an expected

return of  7.28 percent and for the ARMA(1,1) process  12.80 percent. Given

a roundtrip transaction cost of 10 basis points this implies a break-even point of 73 transactions a year

if the AR(1) process holds and of 128 transactions a year if the ARMA(1,1) process holds. If we ignore

persistence (the profit opportunities are white noise) and consider the trading strategy without a filter

then the probability of a switch is 50 percent, implying an average number of roundtrip transactions of

126 a year so that expected returns after transaction costs become negative for the AR(1) process and

zero for the ARMA(1,1) process.
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Monte Carlo Simulation

While these numbers are suggestive, the approximations used here unfortunately do not properly consider

the persistence in mean returns and would be a poor guide for an optimal filter.  Deriving and accounting

for the distribution of actual returns according to equation (25) conditional on a filter is extremely difficult.

This is of course the reason that we resort to the uniform distribution for analytical solutions and why we

use simulation to obtain the optimal filters for the normal distribution numerically.

For each Monte-Carlo trial, we simulate expected returns  using Equation (25) with parameters estimated

from the first 1/3 of the sample. We then choose the filter  which maximizes the after-cost average

excess return. This process is replicated 500 times. Column (7) of Table 1 reports the median value of

the optimal filter to transaction cost ratio, , over the 500 Monte-Carlo trials. For each model, the

ratio  is quite close to the optimal ratio implied under the uniform distribution , with the

difference between them never exceeding 5% of the transaction cost.

3.5 The Optimal Filter Obtained Numerically under Bootstrapping

The actual distribution of  may be neither uniform nor normal. In this case, we re-sample with replacement

the fitted residuals  of Equation (25) and use model parameters to generate expected return observations

. Similar to the Monte-Carlo experiment, for each bootstrapping trial, the optimal filter is chosen to be

the one which maximizes the after-cost average excess return. Column (8) of Table 1 reports the median

estimate of the optimal filter to cost ratio  over 500 bootstrapping replications. Encouragingly, the

optimal filters, for the theoretical uniform distribution case and the numerical normal and bootstrapping

cases, are quite similar for each of the returns processes. Thus, the optimal filter value is robust to

distributional assumptions.

Applying the optimal filters to the data in trading on deviations from uncovered interest parity, we expect

straightforwardly that the optimal filters will outperform naïve filters. In particular, we expect that the

optimal filter does better than the naïve “0” filter that is used implicitly when transaction costs are

ignored for trading decisions (but not for calculating returns), because it saves on transaction costs; and

does better than the naïve “ ” filter that is employed when trading costs are considered myopically,

because it does not filter out as many profitable transactions.

4. Out-of-Sample Optimal Switching Strategy Results

We start our first-day forecast on November 28, 1986 (after the first one third of the sample).10 For each

of the four exchange rate return specifications, we estimate the model parameters using all observations

for the first 1/3 of the sample (up to November 27, 1986) and make the first forecast (for November 28).

If the forecasted excess return (recall that the excess return is defined as the difference between the

10 Our results appear to be quite robust to the starting point of the forecast period: results for each of the four models are very
similar if we start the forecast period at  or  of the sample instead of at 1/3.
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return from holding the Japanese yen, which is the percentage exchange rate change plus the one-day

Japanese interest rate, and the return from holding the U.S. dollar, which is the one-day U.S. interest

rate) is positive, we take a long position in the Japanese yen, and simultaneously take a short position

in the dollar. Conversely, if the forecasted excess return is negative, we take a long position in the dollar

and a short position in the yen. The difference in returns between the long and short positions represents

the excess return from a zero-cost investment strategy. While daily data are employed in this study, we

do not view non-synchronous price information to be a serious issue due to the heavy trading volume of

the Japanese yen.

From the second forecasted day (November 29) until the end of the sample, our strategy works as

follows. For each day, we use all available observations to estimate the model parameters and forecast

the excess return for the following day. If either of the following two conditions occurs, a transaction will

take place. (1) If the forecasted excess return is positive, its magnitude is larger than the transaction

cost filter, and we currently have a long position in the dollar (and a short position in the yen), then we

reverse our position by taking a long position in the yen and a short position in the dollar for the following

day. This counts as one trade involving two round-trip transaction costs.11 (2) If the forecasted excess

return is negative, its magnitude is larger than the transaction cost filter, and the current holdings are

long in the yen and short in the dollar, then we reverse our position by taking a long position in the dollar

and a short position in the yen. This counts as one transaction and again involves two round-trip costs.

If neither of the above two conditions applies, no trade takes place. The current holdings (both long and

short) carry over to the following day and no transaction costs are incurred.

We compute the average excess return for the zero-cost investment strategy and the associated -ratio

for the out-of-sample forecasting period. We document the before-cost and after-cost excess return

rates for the case without a filter, and the after-cost excess return rates for the cases with transaction

cost filters. For perspective, the simple buy-and-hold strategy of holding the yen and shorting the dollar

over the whole out-of-sample period yields an annualized return of -0.00953 (the reverse strategy of

holding the dollar and shorting the yen yields therefore +0.00953), less than one percent. This return is

not statistically distinguishable from zero ( -ratio = 0.348).

Panel A of Table 2 reports the results for the AR(1) forecasting model. Without imposing a transaction

cost filter, the strategy involves 2,100 switches over 4,130 trading days (over 50 percent of the time). In

the absence of transaction costs, the strategy produces an annualized excess return of 6.9 percent with

a -ratio of 2.486 which is statistically significant at the 5 percent level using a 2-sided test. (This number

is quite close to the 7.3 percent return expected for an AR(1) process under the normality assumption).

However, a round-trip cost of 10 basis points completely wipes out the profits, resulting in a negative

excess return of 18.8 percent. A naïve filter equal to the actual transaction cost of 10 basis points

dramatically reduces the number of transactions to 34, and yields an insignificant excess return of 0.9

percent per annum. While it is somewhat useful, this naïve filter may be too conservative because it

11 The transaction cost  in the theory is equivalent to the cost of one round-trip as follows from equation (1) where  represents
the cost of switching from a long position in currency  to a long position in currency . The empirical case, however, is based
on the difference-in-value function in equation (5) in which a long and a short position are combined, implying indeed two
round-trips when a transaction occurs. Note that an intermediate strategy – closing out one position (long or short) but
maintaining the other position – is never optimal. As a result, the overall return is always equal to the difference between the
long and short position returns.
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does not exploit the information on the persistence of expected return in the exchange rate, thereby

missing a number of profitable trades. The strategy with the optimal filter  under the assumption of a

uniform distribution captures just that opportunity. It produces 42 trades and yields a higher excess

return of 5.6 percent which is significant at the 5 percent level. Similarly, the optimal filter under the

normality assumption  produces an average excess return of 5.3 percent per annum which is significant

at the 10 percent level. The bootstrapped filter  yields an insignificant excess return of 2.2 percent.

Panel B reports the results for the ARMA(1,1) model. The after-cost excess return for the case without a

filter is 0.3 percent with 444 trades. The naïve filter equal to  dramatically reduces the number of

trades to 12, resulting in an insignificant excess return of 0.5 percent. In contrast, the optimal filter, ,

captures many of the profitable trades and yields an excess return of 5.1 percent with a -ratio of 1.827

which is significant at the 10 percent level in a two-tailed test (5 percent level in a one-tailed test). The

filter under the bootstrapped distribution  produces nearly the same results as , whereas the filter

under the normality assumption, , yields a higher excess return of 6.6 percent which is significant at

the 5 percent level.

For the MA(21) model reported in Panel C, our strategy with the optimal filters again generates higher

excess returns than the alternatives, although none of the excess returns are statistically significant.

Finally, the long MA(126) process provides very smooth forecast of expected returns. While the strategy

without a filter yields an after-cost return of 4.9 percent which is significant at the 10 percent level, the

naïve filter equal to  skips too many profitable trades, resulting in a negative return of 2 percent. The

optimal filter , while very small relative to , is capable of filtering many days with low expected

returns and capturing those days when expected returns are substantial. This filter produces an expected

return of 5.7 percent which is significant at the 5 percent level. The other two filters,  and  yield

somewhat smaller returns.12

Figures 2 through 5 display the trading strategy returns (after cost) and trading costs for the four return

processes as a function of the filter value. As expected, the trading cost declines monotonically as the

filter value rises. The after-cost excess return lines illustrate that in all cases the ex ante optimal filters

are reasonably close to the ex post optimum. Since the actual data are just one random draw from the

unobserved true process this is all one should expect of a good model. Except for the AR(1) case, the

trading strategy returns display the hump-shaped pattern expected for the after-cost returns.

A striking feature of these four figures is that, even though the optimal filters differ radically across the

four cases, the empirical maximum filter value is quite close to the optimal filter in all four cases. While

each case approximates the true data process to a certain extent, it is not surprising that the ARMA(1,1)

process provides the best overall fit as it is well known to be a parsimonious description of general

ARMA(p,q) processes. The strong performance of the ARMA(1,1) process and the poorer performance

of the AR(1) process is consistent with the results of LeBaron (1992) and Taylor (1992) that ARMA(1,1)

processes are far better at capturing the key features of exchange rate series.

12 The trading strategies for each of the forecasting models imply a reasonably even choice of each currency.  For instance, with

the optimal filter , the fraction of long Japanese yen and short U.S. dollar is: AR(1) 2555/4130, ARMA(1,1) 1830/4130, MA
(21) 1987/4130, and MA(216) 1875/4130.
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Figures 5 through 9 provide a breakdown of the effect of the optimal filters on trading frequency.  In

each of the models, the optimal filters, the , reduce trading frequency considerably but the trades

remain quite evenly distributed over time. For instance, for the ARMA(1,1) model a minimum of two

trades and a maximum of eight trades occurs in each (full) year under the optimal filter trading strategy.

Table 3 provides the risk-adjusted trading rule returns. We correct the ex post trading rule returns from

each of the four forecast models for market risk, using either the MSCI World index or U.S. S&P 500

value-weighted index returns as the market return and the euro-dollar interest rate as the risk free rate.

The MSCI World index is obtained from Morgan Stanley Capital International while the S&P 500 index is

obtained from CRSP. In all cases the market risk sensitivities of the zero-cost investment positions are

near zero. Thus, the risk-adjusted returns, the “alphas”, are very close to the unadjusted returns.

5. Conclusion

If transitory profitable trading opportunities exist, filter rules are used in practice to mitigate transaction

costs. The filter size is difficult to determine a priori. This paper uses a dynamic programming framework

to design a filter that is optimal in the sense of maximizing expected returns after transaction costs. The

optimal filter size depends negatively on the degree of persistence of the profitable trading opportunities,

positively on transaction costs, and positively on the standard deviation of shocks.

We apply our theoretical results to foreign exchange trading by parameterizing the moving average

strategy often employed in foreign exchange markets. The parameterization implies the same decisions

as the moving average rule in the absence of transaction costs, but has the advantage of translating the

buy/sell signal into the same units as the transaction costs so that the optimal filter can be calculated.

Application to daily dollar-yen trading demonstrates that the optimal filter is not solely of academic

interest but may differ to an economically significant extent from a naïve filter equal to the transaction

cost. This depends importantly on the time series process that we assume for the exchange rate dynamics.

In particular, we find that for an AR(1) process the optimal filter is close to the naïve transaction cost

filter, but for an ARMA(1,1) process the optimal filter is only around 30 percent of the naïve transaction

cost filter, and for the more stable MA processes, the optimal filter is smaller still as a fraction of the

transaction cost. Impressively, the optimal filters under the assumptions of uniform, normal, and bootstrap

distributions are all very close to one another and all are quite close to the ex post after-cost return

maximizing level.

We confirm that simple daily moving average foreign exchange trading generates positive returns that

disappear after accounting for transaction costs. However, when the optimal filter is used, returns after

transaction costs remain positive and are higher than for naïve filters. This result strongly suggests that

caution should be applied in dismissing abnormal returns as due to transactions costs, merely because

the after-cost return is negative or insignificant. For instance, Lesmond, Schill, and Zhou (2004) argue

convincingly that momentum profits disappear when actual transaction costs are properly considered,

even after accounting for the proportion of securities held over in each period. But their after-cost

returns are akin to those for our suboptimal zero filter strategy. It would be interesting to see what

outcome would arise if an optimal filter were used.



Working Paper No.2/2005

20

Apart from the practical advantages of using the optimal filter, there is also a methodological advantage:

in studies attempting to calculate abnormal returns from particular trading strategies in which transaction

costs are important, there is no guideline as to what filter to use in dealing with transaction costs.

Lesmond, Schill, and Zhou (2004, p.370) note: “Although we observe that trading costs are of similar

magnitude to the relative strength returns for the specific strategies we consider, there is an infinite

number of momentum-oriented strategies to evaluate, so we can not reject the existence of trading

profits for all strategies.” Rather than allowing the data mining problem that is likely to arise when a

variety of filter sizes are applied, our approach here provides a first step in deriving a unique filter that

can be related to observable variables.
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Appendix

A. The Difference-In-Value Function

From equations (1) and (2):

(A1)

with 

Taking the difference  and using equation (3) yields:

(A2)

Redefining the state variables so that  is without loss of generality since

 and yields:

(A3)

with 

It is clear from (A3) that, once the state variable  is considered, there is no additional role for the state

variable . Thus we have

(A4)
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B. Proof of Proposition 1

It is easy to see that  is monotonically increasing in  and that, in effect, for  a one unit

increase in  raises  more than one unit: there is a direct one-to-one benefit of higher  given that asset

2 is held, plus the positive persistence (  in A3) means that an additional benefit also is expected to

extend to the future.  If we assume that the innovation  has unbounded support, then since

 and , any value of  is possible. Hence, a critical  must exist

such  tha t   and  a  c r i t i ca l   mus t  ex i s t  such  tha t

. Moreover, these critical  are unique due to the monotonicity of .

Thus we can write:

(A5)

with , and

.

Given (A4) and (A5) and since  it follows that

. (A6)

Thus, given (A6) and equations (7) and (8) we have

 . (A7)

Defining the critical mean returns as  and , we have

. Hence, given that  and :

(A8)

Concavity of  for  follows from differentiation of (A5), using Leibniz’s rule:

. (A9)

Again differentiating yields:

,  (A10)
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where we used the fact that from (A6) . Given that  is symmetric and unimodal

we have for  that  if  so that  if  and  if

. Thus, from (A6), for  we have  if  and  if .
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Table 1.  Model Parameters and Implied Optimal Transaction Cost Filters

This table reports parameter estimates for candidate forecasting models and for each model the implied

optimal filter/transaction cost ratios. The forecasting models are AR(1): ; ARMA(1,1):

; and the transformed model of MA(N): , with N = 21 and

126, where ,  is the log of the U.S. dollar price of one Japanese yen,  is the

daily Japanese interest rate, and  is the daily U.S. interest rate. The full sample data cover the period

from August 31, 1978 to May 3, 2003 with 6,195 daily observations. The parameters are estimated with

the first 1/3 of the sample (2,065 observations). The implied optimal transaction cost filters are calculated

under three differential distributional assumptions of : uniform where the optimal filter denoted by 

is calculated using equation (19); normal, where the optimal filter denoted by  is estimated through

Monte-Carlo simulation with 500 replications; and bootstrap, where the optimal filter denoted by  is

estimated through bootstrapping with replacement with 500 replications. The round-trip transaction

cost c = 0.1 percent. Numbers inside parentheses are t-ratios.

(1) (2) (3) (4) (5) (6) (7) (8)

AR(1) Model 0.0548 0.00659 0.92 0.88 0.85

(2.494)

ARMA(1,1) Model 0.918 0.880 0.00658 0.32 0.34 0.32

(19.232) (15.665)

MA(21) Model 0.0257 0.00656 0.23 0.24 0.23

(3.846)

MA(126) Model 0.00818 0.00635 0.083 0.12 0.12

(3.518)
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Figure 1. The Excess Value Function
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Figure 2. After-cost Excess Return (round) and Trading Cost (square) vs. 

Vertical Lines: Solid , Dash , Long Dash , , AR(1) Model

Figure 3. After-cost Excess Return (round) and Trading Cost (square) vs. 

Vertical Lines: Solid , Dash , Long Dash , , AR(1,1) Model
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Figure 4. After-cost Excess Return (round) and Trading Cost (square) vs. 

Vertical Lines: Solid , Dash , Long Dash , , MA(21) Model

Figure 5. After-cost Excess Return (round) and Trading Cost (square) vs. 

Vertical Lines: Solid , Dash , Long Dash , , MA(126) Model
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Figure 6. Trading Frequencies by Year: AR (1) Model

Figure 7. Trading Frequencies by Year: AR (1,1) Model
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Figure 9. Trading Frequencies by Year: MA(126) Model

Figure 8. Trading Frequencies by Year: MA(21) Model


