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Abstract

This paper investigates output convergence for the G7 countries using panel time-series techniques.

We consider both the null hypotheses of no convergence and convergence. It is shown that inferences

on output convergence depend on which one of the two null hypotheses is considered. Further, the no

convergence results reported in previous studies using the time-series definition may be attributed to

the low power of the test procedures being used. Our results also highlight some potential problems on

interpreting results from some typical panel unit root and stationarity tests.
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1. Introduction

One of the major differences between neoclassical and endogenous growth models is their prediction

of national output dynamics. A strong result from the standard neoclassical growth model (Solow, 1956;

Swan, 1956) is the convergence of per capita output across countries with a similar productivity level,

savings rate, depreciation rate, productivity growth and population growth. It means that differences in

national output, in per capita terms, are going to disappear over time. The endogenous growth model

(Romer, 1990; Aghion and Howitt, 1992; Grossman and Helpman, 1991), on the other hand, asserts that

country-specific factors play a role in determining aggregate income. Since country-specific factors

can evolve endogenously according to the environment unique to a country, countries with dissimilar

initial endowments and attributes can have per capita output that do not converge over time. The

different views on national output have spurred considerable interest in testing whether the observed

per capita output data are converging or not. Various statistical techniques and samples on output data

are used to evaluate growth theories. In their review article, Durlauf and Quah (1999) point out that the

growing empirical literature on economic growth has generated “fresh stylized facts on growth with

important implications for theory.”

The empirical literature on output convergence has undergone some changes in recent years. Many of

the early empirical studies are based on the cross-country analysis, which regresses average per capita

output growth rates on initial output levels. Usually, conditioning variables such as education attainment,

government spending, political instability, and the growth rate of the terms of trade are included in such

an output regression equation to control for effects of other growth factors (Barro and Sala-i-Martin,

1995). Under the convergence hypothesis, countries starting with a low per capita income should have

a higher growth rate. Thus, an inverse relationship between output growth and initial output is interpreted

as evidence in favor of the convergence hypothesis. A sample of studies pursuing this methodology is

Baumol (1986), DeLong (1988), Barro (1991), Barro and Sala-i-Martin (1992) and Mankiw et al. (1992). In

general, these studies report results in favor of convergence.1

However, the appropriateness of the cross-country regression approach is challenged by, for example,

Quah (1993), Bernard and Durlauf (1996), and Evans (1997). Quah (1993) shows that a negative correlation

between output growth and initial output is consistent with a stable variance in cross-country output.

Bernard and Durlauf (1996) argue that the initial-output regression approach tends to reject the null

hypothesis of no convergence too often in the presence of multiple output equilibria. Evans (1997)

points out that the cross-sectional approach may generate inconsistent convergence rate estimates,

which lead to incorrect inferences. Instead, these authors propose the use of time-series methods to

study convergence. Under the time-series framework, output convergence requires real per capita cross-

country output differentials to be stationary; that is, the levels of per capita national output are not

diverging over time.

1 See Temple (1999) and Durlauf and Quah (1999) for surveys of the empirical growth literature.
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The existing evidence from the time-series approach is not very favorable to the notion of convergence.

Bernard and Durlauf (1995), using the unit root and cointegration techniques, detect the presence of

multiple integrated processes driving the output data of the OECD countries. The result is interpreted as

not supportive of the convergence hypothesis. Evidence against the convergence hypothesis is also

reported in Quah (1992), which examines the unit root property of per capita output relative to the U.S.

data. Using a panel unit root test, Evans (1998) shows that convergence occurs within a group of

developed countries and different growth patterns are observed among countries with different literacy

rates. Li and Papell (1999) consider a group of OECD countries. Only after allowing for structural breaks,

the authors uncover strong evidence of convergence using per capita national output relative to the

group aggregate.

Compared with the cross-country analysis, the time-series approach yields less convincing findings for

the convergence hypothesis. One possible reason for the no-convergence outcome, however, may be

related to the empirical procedures used in these studies. The typical time-series test has no convergence

(unit root) under the null hypothesis. Since it is commonly known that unit root tests tend to have a low

power against persistent but stationary alternatives, the inability of these studies to reveal evidence of

convergence is not too surprising.

In this study, we use recently developed statistical techniques to investigate the convergence property

of national output. Data from the G7 countries are used. The stationarity property of the real per capita

output relative to the U.S. is used to infer convergence. Data quality has some bearings on the ability of

a test to distinguish the null from the alternative. If the data are not informative enough to discriminate

between the convergence and no-convergence specifications, then statistical procedures will not be

able to reject either the null hypothesis of convergence or no convergence. To highlight the power issue,

we consider two types of panel time-series tests – one has unit root (no convergence) as the null

hypothesis, and the other has stationarity (convergence) as the null. Panel time-series procedures are

employed because their ability to reject a false null hypothesis is higher than the corresponding univariate

procedures. The results from procedures with different specifications of the null hypothesis help determine

the usefulness of the data in terms of their ability to identify the convergence property.

In analyzing output convergence, we control for a few issues related to the use of panel time-series

procedures. First, we account for the effect of cross-country output correlations on the panel tests. The

second issue is related to the joint hypothesis nature of panel time-series tests. For a typical panel

procedure, the rejection of, say, the no-convergence null hypothesis is commonly interpreted as the

rejection of the joint hypothesis that individual output differential series are divergent. However, it may

only take convergence in a subset of countries, which are not identified by the test, to obtain the rejection

result. To address the possible ambiguity, we will examine the convergence behavior of individual output

different series in a panel framework. The third issue is the use of sample-specific critical values. Even

though the statistical procedures usually have well defined asymptotic behavior, their performance in

finite samples is quite difficult to evaluate analytically. To ensure proper inferences, we use artificial data

generated according to parameters estimated from actual output differential series to derive the critical

values.
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We define the empirical specification of output convergence in the next section. The definition is similar

to the time-series version of convergence introduced in Bernard and Durlauf (1996). The statistical tests

are described in Section 3. In this section, we introduce two panel unit root tests (Im et al., 1997; Taylor

and Sarno, 1998), a panel framework to evaluate the convergence behavior of individual output differential

series (Breuer et al., 2002), and the panel stationarity tests (Choi and Ahn, 1999). In the same section,

we also detail the generation of the sample-specific finite sample critical values. The empirical results

are presented in Section 4. Two sample periods are considered – one from 1950 to 1992 and the other

from 1885 to 1994. A larger sample size usually entails better information. Indeed, our exercise shows

that the information in the shorter sample does not give an unequivocal inference on convergence.

Longer output data series, however, yield unambiguous evidence on output convergence. Section 5

contains some concluding remarks.

2. Empirical Specification of Output Convergence

A time-series based approach to investigate output convergence has been proposed by Bernard and

Durlauf (1996) and Quah (1992). According to Bernard and Durlauf (1996), there is output convergence

between two countries if the long-run forecasts of their real per capita outputs are the same. If pairwise

convergence holds for all the pairs of countries under consideration, then there is convergence of all the

countries simultaneously. To make the definition operational, time-series convergence is taken as a

requirement that, for two countries, their real per capita output differentials are stationary. In this case,

the test for convergence is translated to a test for the stationarity of output differentials.

For the empirical studies adopting the notion of time-series convergence, they usually test the null

hypothesis of no convergence against the alternative of convergence (Bernard and Durlauf, 1995; Evans,

1998; Li and Papell, 1999). Specifically, let Yi,t be the (logarithm of the) country i’s real per capita output

at time t and Y*,t is the output variable of the benchmark country. The no-convergence hypothesis is

stated as

I(1), i N (1)

where xi,t is the real per capita output of country i relative to the benchmark country, N + 1 is the total

number of countries in the sample, and I(1) denotes a unit root non-stationary process. Standard

procedures, such as augmented Dickey-Fuller tests, are commonly used to test the I(1) null against the

stationary alternative.

It is well known that the standard unit root tests have low power against stationary but persistent

alternatives. The use of (1) as the null hypothesis may lead to the bias of accepting the no-convergence

hypothesis. One way to address the issue is to consider a different null hypothesis. For instance, if the

information content of the data is not rich enough to differentiate the different types of output dynamics,

then the data will not reject the convergence or the no-convergence hypothesis. Taking stationarity as

the null hypothesis offers an avenue to check if the acceptance of no convergence is due to the lack of

power or if the data actually display diverging dynamics. The null hypothesis of convergence is given by
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I(0), i (2)

where I(0) denotes a stationary stochastic process. When the data offer a clear indication of non-

convergence, the stationary null hypothesis will be rejected.

The results from testing both the non-stationary null hypothesis (1) and the stationary null hypothesis (2)

offer some complementary information to evaluate the competing hypotheses. When we fail to reject

both (1) and (2), the data just do not allow us to separate these two types of convergence dynamics.

However, if we reject (1) as the null hypothesis and do not reject (2) as the null, then the evidence is in

favor of cross-country convergence. Alternatively, a strong evidence of no convergence is established

if the null (2) is rejected but (1) is not rejected.

The examination of both the null hypotheses of stationarity and non-stationarity provides a level field to

evaluate output convergence dynamics. However, it does not directly address the power issue. One

way to extract more information from cross-country data is to use a panel procedure, which incorporates

interactions between data series. In this exercise, we employ a few panel procedures to improve the

power performance. Another way to improve the power performance is to work with a long data series.

Thus, in addition to a post-WWII sample, we examine a longer history data set to see if it gives a more

definite conclusion on convergence dynamics.

3. Statistical Procedures

In this section, we describe the statistical procedures used to evaluate the output convergence dynamics.

While the univariate unit root ADF test is a standard technique, the recently developed panel stationary/

non-stationary procedures are not very commonly utilized in this literature. Thus, we provide a brief

description of these procedures in the following subsection. However, readers who are mainly interested

in the empirical results can skip this section and move directly to the next one.

3.1 Univariate Unit Root Test

The augmented Dickey-Fuller test (ADF, hereafter) is quite commonly used to investigate the stationarity

property of individual output differential series. The test is based on the regression equation

t (3)

The null hypothesis of unit root non-stationarity is rejected if the coefficient bi,0 is significantly less than

zero. The inference is based on the usual t-statistic of bi,0, which has a non-standard distribution. The

Akaike information criterion is used to determine the lag length parameter pi.

The test procedure allows for both a constant and a time trend. The presence of the constant term is to

accommodate the possibility of parallel per capita output paths, which Li and Papell (1999) labeled

deterministic convergence. As pointed out by Evans (1998), many interesting exogenous growth models

predict that countries have the same long-run output growth rate, which are determined by technical
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knowledge and have parallel output paths. The trend term is included to ensure the test result does not

depend on the value of αi (Evans and Savin, 1984). West (1987) also points out that the ADF test is

inconsistent if the process is stationary around a time trend and the trend term is not included. In fact,

for the results reported in the next section, the trend term is always not significant. It is recognized that

the inclusion of such a trend term will lower the power of the test. However, as one of the safeguards

against misleading inferences, we choose to keep the trend term in the regression and accept a power

loss. Instead, the panel procedures are adopted to enhance the power performance.

3.2 Panel Unit Root Tests

Over the past decade, several statistical procedures have been developed to test for unit roots in a

panel setting (Levin and Lin, 1992, 1993; Quah, 1994). One potential benefit of using a panel procedure

is the information gained from pooling data across different series. The information gain can improve

the estimation efficiency and the power of the testing procedure. In the following subsections, we describe

three recently advanced panel unit root tests and their special features.

3.2.1 Lagrange Multiplier Test

Im et al. (1997) propose a Lagrange multiplier (LM) statistic to test for the presence of unit roots in the

panel framework. The LM statistic is based on the average of individual Lagrange multiplier statistics

(LMis) for testing bi,0 = 0, for all i = 1, ..., N. Specifically, the LM test statistic and the null hypothesis are

given by

(4)

and

H 0 : b1,0 = b2,0 = ... = bN,0 = 0 (5)

Under conditions given in Im et al. (1997), the standardized LM statistic has an asymptotic standard

normal distribution under the null hypothesis (5). See Im et al. (1997) for a detailed discussion of the test

statistics. Note that under the null hypothesis given by (5), there is no convergence between any pair of

countries. Compared with some previous procedures (Levin and Lin, 1992, 1993; Quah 1994), the LM

test allows a higher degree of heterogeneity in the cross-sectional data. For instance, the length parameter

pi can vary across individual series. Also, the cross-sectional correlation induced by a common time

effect can be handled using cross-sectionally demeaned data.

3.2.2 Panel ADF Test

Sarno and Taylor (1998) and Taylor and Sarno (1998) propose a panel version of the ADF (MADF) test. To

implement the test, (3) is estimated as a system of N equations using the feasible generalized least

squares technique and the standard Wald test statistic is used to evaluate the null hypothesis given by

equation (5).

Again, the null hypothesis of the MADF test is a joint hypothesis of no convergence between any pair of

countries. The MADF test allows for different lag parameters in individual series. Compared with the
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Im et al. LM test, the MADF test has a more flexible structure to accommodate cross-sectional correlation.

Taylor and Sarno (1998) show that, using the Monte Carlo method, the MADF test has better power

properties than the univariate ADF procedure.

3.2.3 SURADF Test for a Unit Root in Individual Series

The LM and MADF tests discussed in the previous subsections achieve power improvement by exploiting

the multivariate nature of the system. However, a rejection of the null hypothesis by the LM and MADF

tests should be interpreted with caution. Because of the joint nature of the null hypothesis, the null

hypothesis that all country pairs do not converge can be rejected if one or more real per capita output

differential series display convergence. Thus, when the null hypothesis is rejected, we do not know if

convergence exists in some or all of the countries under consideration. These two panel unit root tests

are not able to identify which members of the panel achieve convergence. Thus, the two procedures do

not yield unambiguous evidence on convergence even if the no-convergence null hypothesis is rejected.

Breuer et al. (2002) devise a panel procedure, labeled the SURADF test, to test for the presence of a unit

root in an individual series. The procedure constructs the test statistics within a panel framework but

evaluates the unit root property series by series. In doing so, the procedure exploits information embedded

in the system and yields evidence on which member of the system is (non-)stationary. That is, the

SURADF test offers a way to improve the chance of rejecting a false null hypothesis of non-stationarity

and alleviates the ambiguity that arises with a joint null and alternative hypotheses of “all series are non-

stationary/not all series are non-stationary.”

In essence, the feasible generalized least squares method is used to estimate the system of N equations

and the null hypothesis

H 0 : bi,0 = 0 (6)

is examined individually for i = 1, ..., N. As the statistics are estimated within a system, it is not appropriate

to use the standard ADF critical values to appraise their significance. Breuer et al. (2002) recommend

the use of sample-specific critical values to conduct the statistical inference.

3.3 Panel Stationarity Tests

The tests presented in the previous subsections have non-stationarity, or no convergence, as the null

hypothesis. If these tests have low power, then the no-convergence result will be erroneously established.

Recently, Choi and Ahn (1998) developed a panel test for stationarity against non-stationary alternatives.

Their procedures are semi-nonparametric and do not require information on the parametric ARMA

structure of the data. Compared with the panel unit root tests, the Choi and Ahn test offers a different

perspective to evaluate the output convergence property. One statistic considered here is a multivariate

version of the Sargan and Bhargava (1983) test:

(7)
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tr denotes the trace of a matrix.  is the partial sum  where the transformed variable  is derived

from

 ,

where is the N x 1 vector containing , i = 1, ..., N.  is the heteroscedasticity and autocorrelation

consistent covariance matrix estimator,

where k(n / l) is a quadratic spectral kernel and l is a bandwidth parameter capturing the serial correlation

in the data.

It is known that pre-whitening the data with a low-order AR regression yields a more accurate covariance

estimate. Thus, in our exercise, the covariance matrix is estimated by the Andrews and Monahan (1992)

prewhitened kernel estimator, which applies the Andrews (1991) data-dependent method to determine

the bandwidth parameter. Following Choi and Ahn (1998), we set l equal to integer [δ(T/100).25] when

the data-dependent method gives a bandwidth parameter that is greater than T.65. In this exercise, we

have δ = 8, 10, and 12. The prewhitening of  is accomplished using a VAR(1) operator, and the

filtered data are used to construct C(n).

Choi and Ahn (1998) suggest the SBDH statistic can be calculated using another transformed variable

, defined by

.

When  is replaced by  in (7), we label the resulting statistic SBDHT. Both the SBDH and SBDHT

statistics test the null hypothesis that all individual series are stationary. The alternative is that not all of

the series in the panel are stationary. That is, under the null hypothesis output data series under

consideration converge simultaneously. Under the alternative hypothesis, convergence does not hold

for at least one country. Thus, results from the SBDH and SBDHT tests are complementary to those

from the panel unit root tests. However, similar to the LM and MADF panel unit root tests, a rejection of

the SBDH and SBDHT tests has to be interpreted with caution. The rejection of stationarity by the SBDH

and SBDHT tests imply some or all the series are non-stationary, but the tests do not identify which

ones are non-stationary.
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3.4 Sample-Specific Critical Values

The finite-sample behavior of the panel test statistics can be very different from the one implied by their

asymptotic distributions. To minimize the finite-sample effects on our empirical results, we rely on sample-

specific critical values to draw statistical inferences. Since both the null hypotheses of stationarity and

non-stationarity are considered, we fit an ARIMA and an ARMA model to each output differential series.

The model specification is determined by the information criterion. The estimated residuals are used to

produce the covariance matrix of the error term. These parameter estimates, then, define the data

generating process.

For each panel unit root test, a pseudo-random sample N x (T + 100) is generated according to the

estimated ARIMA and covariance matrix specifications under the null hypothesis. The first 100

observations of each series are dropped to minimize the effect of initial conditions. The sample test

statistic is then calculated. The sample-specific critical values for the panel stationary tests are generated

in a similar fashion using the stationary specifications. All the sample-specific critical values reported

below are based on 10,000 replications in each experiment.

4. Empirical results

The procedures described in the previous section are used, together with the corresponding sample-

specific critical values, to evaluate the output convergence hypothesis. Data from the G7 countries are

used.

4.1 The Summers and Heston Data Set: 1950-1992

The output data from the Penn World Table are widely used in empirical studies of growth and

convergence. The current version, Mark 5.6, is a revised and updated version of the preceding Mark 5

(Summers and Heston, 1991). The annual data on GDP per capita in real terms from the G7 countries

are considered. Purchasing power parity conditions are incorporated in the compilation process to

make these output data comparable across countries. The real series are computed using a chain index

expressed in international prices with 1985 as the base year. The sample period is from 1950 to 1992. In

this exercise, the U.S. is the benchmark country. The term “output differential” is used to denote the real

per capita output in a country relative to the real per capita output in the U.S.

4.1.1  Univariate Analysis

First, we apply the ADF test to the output differentials. The null hypothesis of non-stationarity is interpreted

as no convergence with respect to the U.S. data. The results, presented in Table 1, show limited evidence

of convergence. The estimate i,0 + 1 that indicates output differential persistence displays a wide

range. The half-lives implied by these estimates range from less than a year (United Kingdom) to over 10

years (Japan). Despite the estimated wide spectrum of persistence, the data on output differentials

seem quite noisy. With the exception of the German output differential series, the null hypothesis of

non-stationarity is not rejected. The no-convergence result is similar to those reported in earlier studies

adopting the time-series approach (Bernard and Durlauf, 1995; Quah, 1992; Li and Papell, 1999).
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While the univariate ADF test does not offer positive evidence on convergence, the univariate analysis

provides two useful pieces of information about output dynamics. First, individual output differential

series tend to have dissimilar lag structures. Second, there is considerable comovement among the

output differential series as indicated by the correlation of residuals from the individual least squares

estimation of (3). The Canadian output differential series has the lowest level of comovement with others -

the correlation coefficients between the Canadian and other national series vary from -0.02 (Canada-U.K.)

to 0.27 (Canada-France). For the other output differential series, the correlation coefficients of the

estimated residuals are usually positive and large. In fact, the residual correlation coefficients range

from 0.41 (Italy-U.K.) to 0.76 (France-Italy).

Both the heterogeneous lag structure and the correlation between series have implications for panel

tests. For instance, if heterogeneous lag structure and cross-equation correlation are not properly

accounted for, they have non-trivial effects on the size and power of panel tests (O’Connell, 1998;

Papell and Theodoridis, 2000; Taylor and Sarno, 1998). Thus, the panel results reported in the following

are all based on the tests that allow for both heterogeneous lag structure and cross-equation residual

correlation. The effects of these two factors on finite-sample performance are accounted for using

sample-specific critical values.

4.1.2 Panel Analysis

The results of the Im et al. LM test and the Taylor and Sarno MADF test are reported in Table 2. The joint

null of non-stationarity is not rejected by both tests. The Im et al. statistic has a p-value of 26.75%,

which is well above the usual 5% or 10% levels. The MADF statistic gives an even higher p-value of

74.63% and clearly indicates no convergence among the national output data. Even though these two

panel procedures have better power than the univariate ADF test, they do not provide more favorable

evidence of output convergence.

Taylor and Sarno (1998), for example, allude to the possibility that the presence of one stationary series

can lead to the rejection of the joint hypothesis that all the individual series are non-stationary. That is,

rejecting the joint null does not tell us whether all or some of the elements of the multivariate system are

stationary. However, the current exercise illustrates the other possibility. The non-rejection of the null

does not necessarily mean all the member series are non-stationary. Due to the lack of power, a panel

unit root test may disguise the stationarity of a member series. As indicated in Table 1, the German

output differential series is stationary. The panel unit root tests, nonetheless, do not reject the null that

all the series are non-stationary. Thus, one should interpret these panel test results with caution.

We used the Breuer et al. SURADF test to investigate individual output differential convergence in the

panel setting. The results are given in Table 3. Both the estimates of the ( i,0 + 1)s and the test results

are similar to those based on the univariate ADF tests.2 There is only evidence of convergence between

the German and U.S. output data as the German output differential series is found to be stationary. For

the other countries, there is no sign of convergence with the U.S. output. Thus, the potential power gain

2 As observed by an anonymous referee, the estimates of  from the univariate and SURADF procedures are not the
same as the latter takes into account the contemporaneous correlation of the error terms.
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from using a panel framework does not yield stronger evidence for output convergence. Compared with

the panel tests, the univariate ADF seems to still have a role in studying output convergence.

The test results derived from both univariate and panel unit root tests offer limited support for the output

convergence hypothesis. However, it is possible that the finding of no convergence is due to the inability

of the procedures to reject the null hypothesis - either because of the low power of the procedures or

the uninformative data. To shed light on such a possibility, we apply the Choi and Ahn panel stationarity

test to the output differential data. Following Choi and Ahn (1999), we set the lag truncation parameter

δ to 8, 10, and 12. Table 4 presents the test results.

The stationarity test results are in stark contrast with the unit root test results. Both the SBDHT and

SBDH statistics do not reject the null hypothesis that all the series are stationary. Specifically, for δ = 10,

the SBDHT statistic has a p-value of 37.68% and the SBDH statistic has a p-value of 45.35% – both fail

to reject the joint null of stationarity even at the 10% level. That is, if the null hypothesis is “convergence

exists simultaneously in all country pairs,” then the data do not contradict the notion of output

convergence.

Given the unit root and stationarity test results, what can we say about the output convergence

hypothesis? The inference is disconcertingly dependent on the way the null hypothesis is set up. While

the unit root tests do not reject the no-convergence hypothesis, a result that is consistent with previous

studies adopting the time-series approach, the stationarity tests reveal the data can be supportive of

the convergence hypothesis. There is one probable interpretation of the non-confirmatory results. The

information content of the output differential data is not sharp enough for the testing procedures to

discriminate between convergence and no convergence.

4.2 The Maddison Data Set: 1885-1994

In the previous subsection, the results based on the post-WWII sample period indicate that output data

may not be informative enough to yield an unequivocal conclusion on output convergence. One possible

remedy is to employ a more informative data set. Maddison (1995) provides an alternative data set to

examine output convergence. The data set is also commonly used in output dynamics analysis (Bernard

and Durlauf, 1995; Evans, 1998; Li and Papell, 1999). One advantage of the Maddison data set is that,

compared with the Penn World Table, it covers a longer sample period. The data are comparable across

countries and have been adjusted for changes in national boundaries. The sample period is from 1885

to 1994.

The results of the univariate and panel unit root tests are reported in Tables 5, 6, and 7. In general, the

( i,0 + 1)s suggest that the point estimates of output persistence in the post-WWII sample and the

Maddison data set are quite comparable. The United Kingdom output differential series is the notable

exception – ( i,0 + 1) in Table 5 is larger than the corresponding one in Table 1. Thus, if the Maddison

data set rejects the unit root hypothesis, the result is likely driven by the improved information in the

longer sample.
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Despite the increase in the sample size, the univariate ADF test still gives limited support for convergence.

Only the French output differential series rejects the unit root hypothesis at the 10% level; indicating the

U.S. and French output data converge over time. Other output differential series show no significant

evidence of convergence.

The Im et al. and Taylor and Sarno panel unit root tests, on the other hand, deliver a completely different

picture (Table 6). Both tests convincingly reject the joint null of non-stationarity. Thus, with the information

in the long historical data, the LM and MADF panel unit-root tests are able to provide strong evidence in

favor of convergence, which is in sharp contrast with the results for the post-WWII data. Thus the

combination of a long data series and efficient panel tests contributes to a positive result of convergence.

However, there is still a question of whether all or just some countries display convergence.

The Breuer et al. SURADF test results highlight the possibility that the rejection of the joint non-stationary

null hypothesis does not necessarily mean all the output differential series are stationary. Indeed, the

SURADF test reveals a diverse pattern of convergence behavior among individual output differential

series and suggests the rejection of the joint non-stationarity null hypothesis is driven by the stationarity

of some but not all of the output differential series. Table 7 indicates that there is no convergence

between the U.S. and Japanese output series. Again, the results point to the potential ambiguity in

interpreting findings from panel unit root tests. While the results with the Maddison data set are more

favorable to the convergence hypothesis, the results from the SURADF test suggests that a subgroup in

the panel may be responsible for the findings from the other tests.

Broadly speaking, the results of the Choi and Ahn tests reported in Table 8 corroborate the unit root test

results. For the recommended δ values, both the SBDHT and SBDH statistics fail to reject the null of

simultaneous convergence between the G7 countries. These results reinforce those in Tables 6 and 7

and constitute strong evidence of convergence. Nevertheless, given the SURADF test results, the non-

rejection of the joint stationarity null also disguises the possibility that some series in the system are

non-stationary.

4.3  Discussion

When the same set of procedures are applied to the output differential series from Summers and Heston

(1991) and Maddison (1995), they generate different inferences on output convergence. It can be argued

that the discrepancy is attributed to sample differences. As the Maddison sample is longer than the

Summers and Heston one, the former contains more information about output dynamics than the latter.

This observation is consistent with the findings that the Maddison sample offers much more precise

statistical evidence of convergence than the Summers and Heston data set. Thus, data information,

which has significant implications for discriminating among different types of output convergence

behavior, is an important factor in studying the output dynamics. Empirical studies on output convergence

should benefit from both the use of a longer sample period and more efficient panel procedures.

It is known that the data from Summers and Heston (1991) and Maddison (1995) are constructed

differently. The different ways to compile the data can impute dissimilar dynamics in the output data

and lead to different convergence results. To explore this possibility, we apply the same tests to the
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Maddison data set for the sample period 1950-1992; that is the same period covered by the Summers

and Heston data set. The results, reported in the Appendix, are qualitatively the same as those in Tables

1 to 4. Again, the inference on output convergence in the shorter sample period depends crucially on

whether convergence or no convergence is taken as the null hypothesis. Thus, the information content

of the data, rather than data construction method, is the probable reason behind the discrepancy in

inferences on output convergence reported in the previous subsections.

To shed some light on the power of the joint hypothesis unit root and stationarity tests, we evaluate the

sample-specific empirical power of the LM, MADF, SBDH, and SBDHT. In evaluating the power of the

LM and MADF tests, we generate the data according to the VAR models that best fit the data and use

the sample-specific finite sample critical values to determine the rejection frequency. The number of

replication is set to 1,000.3 For the post-WWII sample period, the rejection rates of the LM and MADF

tests are, respectively, 89.4% and 95.6% at the 5% significance level. For the Maddison sample period,

the rejection rates are 97.5% (LM) and 99.3% (MADF). The simulation exercise indicates both the LM

and MADF tests have very good empirical power.

The best-fitted integrated VAR models are used to generate artificial data to assess the sample-specific

empirical power of the panel stationarity tests. Using the sample-specific finite sample critical values,

the SBDH and SBDHT tests appear to have limited power to reject the integrated VAR specifications.

For instance, consider the 5% significance level and δ = 10. In the post-WWII sample period, both

SBDH and SBDHT tests have a rejection rate lower than the size of the test. For the Maddison sample

period, the empirical power improves slightly to 10.0% (SBDH) and 16.6% (SBDHT). Apparently, the

simulation results reflect the usual power concern about statistics based on nonparametric kernel methods

to control for heteroskedasticity and serial correlation.

5. Concluding Remarks

The time-series framework is used to investigate the presence (absence) of output convergence among

the G7 countries. Arguments for and against the output convergence hypothesis are made based on

whether an output differential series is stationary or has a unit root. In this exercise, we approach the

empirical issue of output convergence from two perspectives. First, we consider no convergence as the

null hypothesis. In this case, the hypothesis of no convergence enjoys the benefit of doubt in the sense

that its rejection requires some strong evidence against it. Second, we assess the null hypothesis of

convergence. The study of cross-country output dynamics from both viewpoints gives an equal

opportunity for both convergence and no convergence to be validated by the data as the null hypothesis.

Our empirical results suggest that the inference about output convergence can be dictated by the

choice of a null hypothesis. A conclusion of no output convergence can be reached just because no

convergence is considered as the null hypothesis. Further, the no-convergence result reported in previous

studies pursuing the time-series definition may be attributed to the low power of the test procedures

being used. While short output data series or the use of univariate unit root procedures yields very

3 The detailed simulation results are available from the authors.
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limited support for the convergence hypothesis, the combination of long sample and efficient panel

procedures delivers a more favorable result for the same hypothesis.

In addition to the issue of output convergence, the empirical exercise raises a few interesting observations.

For example, the results from a typical panel unit root or stationarity test have to be interpreted with

caution. A non-rejection of a joint non-stationarity (stationarity) null hypothesis is not a sine qua non for

all the series to be non-stationary (stationary). Similarly, the stationarity (non-stationarity) of a subset of

series can lead to the rejection of a joint non-stationarity (stationarity) null hypothesis. Specific panel

procedures have to be implemented to determine the stationarity property of individual series. In our

exercise, the use of the Breuer et al. SURADF test helps identify the countries in the sample that converge.

Another issue is related to the presence of convergence clubs (Quah, 1997; Evans, 1998). In the two

data samples examined, there are signs that countries have diverse convergence patterns. Even among

the G7 nations that are quite homogenous the convergence in output does not occur simultaneously

across all the countries. The result lends considerable support to the notion of convergence clubs in

which member countries converge to a club-specific steady state. Thus, empirical studies of output

convergence should allow for the presence of convergence clubs.
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Table 1. Univariate ADF Test (Summers-Heston Data)

Country
i,0 + 1 Statistic 1% 5% 10%

Canada 0.8548 -1.6402 -4.1719 -3.5048 -3.1792

France 0.9175 -1.2987 -4.1948 -3.5253 -3.1988

Germany 0.8266 -4.0251** -4.1719 -3.5048 -3.1792

Italy 0.8869 -1.8415 -4.1948 -3.5253 -3.1988

Japan 0.9350 -1.4318 -4.1381 -3.4667 -3.1404

United Kingdom 0.6573 -2.5844 -4.1381 -3.4667 -3.1404

Note: Critical values from Cheung and Lai (1995) are used. “**” indicates significance at the 5% level.

Table 2. Panel Unit Root Tests for the Joint Null Hypothesis of Non-stationarity (Summers-Heston

Data)

Statistic p-value 1% 5% 10%

LM 5.6097 0.2675 7.9988 7.0324 6.4983

MADF 23.6492 0.7463 57.4831 48.2556 43.6976

Note: The Im et al. LM and Taylor and Sarno MADF panel unit root test statistics are given in rows labeled LM and MADF. The
p-values and the 1%, 5%, and 10% sample-specific critical values are computed from 10,000 Monte Carlo simulations.

Table 3. Test for Unit Root in Individual Series using Panel Estimation (Summers-Heston Data)

Country
i,0 + 1 Statistic p-value 1% 5% 10%

Canada 0.8833 -1.3889 0.8624 -4.6653 -3.9788 -3.6132

France 0.9209 -1.7821 0.7859 -4.9229 -4.0977 -3.7222

Germany 0.8231 -5.4472 0.0019 -4.6977 -3.9768 -3.5889

Italy 0.8650 -2.8308 0.3567 -4.8495 -4.0354 -3.6833

Japan 0.9503 -1.4775 0.8012 -4.8029 -3.9876 -3.6008

United Kingdom 0.6760 -2.9617 0.2632 -4.7801 -4.0186 -3.6187

Note: Results of the Breuer et al. SURADF test are reported. The p-values and the 1%, 5%, and 10% sample-specific critical
values are computed from 10,000 Monte Carlo simulations.

Table 4. Panel Tests for the Joint Null Hypothesis of Stationarity (Summers-Heston Data)

Statistic δδδδδ p-value 1% 5% 10%

SBDHT 1.0914 8 0.4010 9.0292 2.7976 1.9529

SBDH 1.3075 8 0.3948 12.1740 3.3111 2.3090

SBDHT 1.6601 10 0.3768 39.5396 8.0292 4.4393

SBDH 1.6155 10 0.4535 41.8087 8.4362 4.8938

SBDHT 1.6576 12 0.3446 40.9670 9.1615 4.8888

SBDH 1.7212 12 0.3872 44.1652 10.1339 5.5214

Note: The Choi and Ahn panel stationarity SBDH and SBDHT test statistics are given. The p-values and the 1%, 5%, and 10%
sample-specific critical values are computed from 10,000 Monte Carlo simulations.
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Table 5. Univariate ADF Test (Maddison Data)

Country
i,0 + 1 Statistic 1% 5% 10%

Canada 0.8217 -2.9644 -4.0239 -3.4377 -3.1414

France 0.8761 -3.3140* -4.0239 -3.4377 -3.1414

Germany 0.8968 -2.7634 -4.0030 -3.4201 -3.1252

Italy 0.9019 -2.7765 -4.0239 -3.4377 -3.1414

Japan 0.9575 -1.4747 -4.0351 -3.4466 -3.1494

United Kingdom 0.8827 -2.4949 -4.0351 -3.4466 -3.1494

Note: see the note to Table 1. “*” indicates significance at the 10% level.

Table 6. Panel Unit Root Tests for the Joint Null Hypothesis of Non-stationarity (Maddison Data)

Statistic p-value 1% 5% 10%

LM 9.3506 0.0039 8.5550 7.3725 6.7644

MADF 48.0690 0.0457 55.6803 47.6319 43.2772

Note: see the note to Table 2.

Table 7. Test for Unit Root in Individual Series using Panel Estimation (Maddison Data)

Country
i,0 + 1 Statistic p-value 1% 5% 10%

Canada 0.8011 -4.3299 0.0101 -4.3401 -3.6721 -3.3629

France 0.8254 -5.6418 0.0005 -4.3775 -3.7625 -3.4232

Germany 0.8869 -3.3587 0.0929 -4.3401 -3.6401 -3.3174

Italy 0.8816 -4.9693 0.0024 -4.3982 -3.7873 -3.4514

Japan 0.9376 -2.6350 0.3261 -4.3964 -3.6778 -3.3348

United Kingdom 0.8845 -3.6285 0.0552 -4.3812 -3.6761 -3.3501

Note: see the note to Table 3.

Table 8. Panel Tests for the Joint Null Hypothesis of Stationarity (Maddison Data)

Statistic δδδδδ p-value 1% 5% 10%

SBDHT 0.61362 10 0.0652 2.0712 0.6797 0.5517

SBDH 0.73289 10 0.1094 3.1892 1.0205 0.7505

SBDHT 0.61750 12 0.1479 3.0010 0.9023 0.6951

SBDH 0.73526 12 0.2028 3.8024 1.2270 0.9036

SBDHT 0.64328 14 0.3003 5.2921 1.5270 1.0166

SBDH 0.75565 14 0.3520 6.2656 1.8393 1.2345

Note: see the note to Table 4.
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Appendix. Results for the 1950-1992 Maddison Data Set

Table A1. Univariate ADF Test

Country
i,0 + 1 Statistic 1% 5% 10%

Canada 0.5966 -2.6841 -4.1948 -3.5253 -3.1988

France 0.9311 -1.1421 -4.1948 -3.5253 -3.1988

Germany 0.8612 -4.1593** -4.1719 -3.5048 -3.1792

Italy 0.9169 -1.6579 -4.1948 -3.5253 -3.1988

Japan 0.9559 -1.3279 -4.1719 -3.5048 -3.1792

United Kingdom 0.6023 -3.3271* -4.1381 -3.4667 -3.1404

Note: see the note to Table 1.

Table A2. Panel Unit Root Tests for the Joint Null Hypothesis of Non-stationarity

Statistic p-value 1% 5% 10%

LM 5.3713 0.3294 8.1102 7.0742 6.5339

MADF 14.7610 0.9746 58.9337 48.8404 44.6416

Note: see the note to Table 2.

Table A3. Test for Unit Root in Individual Series using Panel Estimation

Country
i,0 + 1 Statistic p-value 1% 5% 10%

Canada 0.6233 -1.7019 0.7780 -4.8399 -4.0188 -3.6294

France 0.9441 -0.9348 0.9614 -4.9131 -4.1562 -3.7735

Germany 0.8563 -5.6886 0.0015 -4.8686 -4.0653 -3.6765

Italy 0.8819 -2.5893 0.4808 -4.8910 -4.1588 -3.7871

Japan 0.9651 -1.2061 0.9060 -4.8778 -4.0738 -3.6994

United Kingdom 0.6637 -2.9249 0.2687 -4.7443 -3.9378 -3.5703

Note: see the note to Table 3.

Table A4. Panel Tests for the Joint Null Hypothesis of Stationarity

Statistic δδδδδ p-value 1% 5% 10%

SBDHT 1.1176 8 0.4007 10.8801 3.0511 2.1361

SBDH 1.6457 8 0.2357 11.1896 3.3939 2.4016

SBDHT 1.0645 10 0.5209 41.1462 8.9955 4.7205

SBDH 2.2710 10 0.2819 47.0899 9.2506 4.9326

SBDHT 1.0802 12 0.4324 40.3842 9.7757 4.9781

SBDH 2.0499 12 0.3154 43.1592 10.0445 5.4887

Note: see the note to Table 4.




