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Abstract 
 

This paper studies the discriminatory power and calibration quality of the structural credit risk models 

under the “exogenous default boundary” approach including those proposed by Longstaff and 

Schwartz (1995) and Collin-Dufresne and Goldstein (2001), and “endogenous default boundary” 

approach in Leland and Toft (1996) based on 2,050 non-financial companies in 46 economies during 

the period 1998 to 2005.  Their discriminatory power in terms of differentiating defaulting and 

non-defaulting companies is adequate and the differences among them are not material.  In addition, 

the calibration quality of the three models is similar, although limited evidence is found that the 

Longstaff and Schwartz model marginally outperforms the others in some subsamples. Overall, no 

significant difference in the capability of measuring credit risk between the “exogenous default 

boundary” and “endogenous default boundary” approaches is found. 
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1. Introduction 
 

This paper compares the discriminatory power and calibration quality of three popular structural credit risk 

models, including Longstaff and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and Leland and 

Toft (1996) (referred to as the LS, CG and LT models respectively). The study contributes to the literature 

in the following three areas. First, since the models cover two streams of the structural credit risk models, 

the “exogenous default boundary” approach (as represented by the CG and LS models) and the 

“endogenous default boundary” approach (as represented by the LT model), the comparisons could shed 

light on the differences in default predication power between these two streams. Secondly, although 

economic intuitions generally suggest that models with more parameters are easier to capture main 

economic characteristics of corporate behaviour in the real world and thus higher default prediction power, 

empirical evidence in this area is relatively scant. This study could fill this gap in the literature, as the 

three models represent different degrees of complexity in terms of the number of model parameters.  

Thirdly, since our analysis mainly follows the methodology by Basel (2005) in validating credit risk 

systems under Basel II, the empirical findings could enrich our understanding of the comparative 

performance of the structural models in the context of the Basel II model validations, in particular the 

internal rating-based approach for large corporate portfolios.   

 

Black and Scholes (1973) and Merton (1974) have been the pioneers in the development of the structural 

models for credit risk of corporates using a contingent-claims framework.  They treat default risk 

equivalent to a European put option on a firm’s asset value and the firm’s liability is the option strike.  To 

cope with the possibility of early default before bond maturity, Black and Cox (1976) assume an 

exogenous default-triggering level for the firm’s assets whereby default can occur at any time.   

 

Extensions of structural models have long been a core interest of academics and market practitioners.  

The LS model extends the Black-Cox model to incorporate interest rate risk explicitly into the analysis and 

also open a new research avenue in that the evolution of the firm's capital structure is no longer tied up 

with the payoffs of any individual claim on the firm’s assets.  This feature allows the default boundary to 

be independent of the state-contingent payoffs of the claim under consideration.  Default occurs when the 

firm asset value falls below an exogenous default boundary.  The constant default boundary in the LS 

model corresponds to the total amount of debts issued by the firm, that is kept constant over time.  The 

LS model therefore predicts that the expected leverage ratio will decline exponentially over time.   

 

Some empirical findings suggest that companies tend to gradually adjust their capital structures toward a 

target level of leverage.1  This means that a firm adjusts its outstanding debt in response to changes in its 

firm value in order to achieve a target level of leverage.  These findings call for the stationary-leverage 

model for pricing corporate bonds, which is the CG model.  The model considers a mean-reverting liability 

                                                 
1  See Marsh (1982), Jalilvand and Harris (1984), Auerbach (1985) and Opler and Titman (1995) 
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that is an exogenous default boundary.  This assumption makes the leverage ratio approach towards a 

constant target liability-to-asset (i.e. leverage) ratio over time.  The long-term target ratio is observed to be 

close to the average leverage ratio of BBB-rated firms.  The CG model helps reconcile some predictions 

of credit spreads with empirical observations.  These include credit spreads that are larger for low-

leverage firms and less sensitive to changes in firm value, and upward sloping term structures of credit 

spreads of speculative-grade bonds. 

 

In contrast to an exogenous default boundary, the LT model considers an endogenous-boundary model in 

which the firm issues debt of arbitrary maturity.  The LT model specifies the default boundary as a 

function of the expected return and volatility of asset value, the risk free rate of interest, leverage, debt 

maturity, and default costs.  To capture the idea of a long-term or “permanent” capital structure, the model 

presumes that debt is continuously rolled over.  This structure assures that total outstanding principal and 

coupon payments, as well as average debt maturity, remain constant over time, even though each 

individual bond has a life that shortens with time.  This stationary capital structure implies that the optimal 

default boundary remains constant through time, although its level now depends upon the maturity of debt 

issued as well as the other parameters of the model.   

 

Despite significant theoretical development of structural models in the past decades, empirical 

comparisons are rather limited.  Indeed, only a few articles implement a structural model to evaluate its 

ability to predict prices or spreads (see Eom et al. (2004) and the reference therein).  Eom et al. (2004) 

show that structural models (including the LS, CG and LT models) predict spreads which are too high on 

average, suggesting that the models in generally could not achieve a high level of accuracy. Few 

empirical studies have been conducted on the relationship between actual default rates and theoretical 

default probabilities (PDs) calculated from these models.   Leland (2004) finds that PDs generated from 

the LS and LT models fit the term structures of actual default rates provided by Moody’s (1998) for longer 

time horizons quite well for reasonable parameters with proper calibrations.2  Hui et al. (2005) show that a 

generalised “exogenous default boundary” is capable of generating term structures of PDs which are 

consistent with the term structures of actual default rates of credit ratings of BBB and below, in particular 

at longer time horizons. 

 

In this paper, the discriminatory power and calibration quality of the three models are assessed using a 

large dataset from the Credit Monitor of Moody’s KMV. As the analysis involves comparisons of PDs 

against the real-world default frequencies of companies in the dataset, all assessments are based on the 

real-world PDs, which are derived by applying a simple calibration method on the “theoretical” PDs3 

generated from the models so that the comparisons are meaningful. Since the dataset also contains the 

                                                 
2  The predicted PDs are too low for short maturities.  The problem of downward-biased PDs at short maturities is however 

common to all contingent-claims credit risk models which assume continuous dynamics. 
 
3  Theoretical PDs, in this study refer to the PDs generated from the structural models based on some reasonable parameter 

values which will be discussed in subsection 3.1. 
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companies’ Expected Default Frequencies (EDFs), which are the 1-year real-world PDs from the KMV’s 

structural model, the performance of the three models will be benchmarked to the EDFs where 

appropriate to provide further insight on the models’ performance. 4   A brief introduction on the 

calculations of the EDF by the KMV is presented in the Appendix.   

 

The remainder of the paper is organised as follows.  In the following section we illustrate the data used for 

the study.  The empirical results are presented in section 3.  The final section summarises and discusses 

the findings.   

 

2. Data and Model Parameters 
 

The Credit Monitor of Moody’s KMV5 dataset for the analysis consists of 8,486 year-end observations 

from 2,050 publicly listed non-financial companies6 in 46 economies covering the period 1998 to 2005.7 

Only those companies with S&P’s credit ratings are included in the analysis.8  Table 1 presents the 

distribution of S&P’s ratings (AAA to CCC+ or below) of the samples.  The distribution of the samples 

across industries and economies are presented in Tables 2 and 3 respectively. Major model inputs, 

including the asset volatility, the default point (firm liability), and the market asset value of companies9 are 

directly extracted from the dataset and apply identically to the three models to derive the PDs of 

companies. This ensures the PDs from different models are comparable.  

 

Regarding the value of model parameters, we mainly follow the literature. The predefined default-

triggering level of the leverage ratio is set to be one for the CG and LS models, which is also adopted in 

Collin-Dufresne and Goldstein (2001).  In the CG model, the mean-reverting parameter for the leverage 

ratio is set to be 0.1 that is estimated by Fama and French (2002) who investigate the universe of firms.  

The target leverage ratio is assumed to be 0.315 which is the average leverage ratio of BBB-rated firms 

                                                 
4  The EDF is determined by mapping the distance-to-default (measured by the difference between a firm’s asset value and a 

default threshold in terms of the firm’s asset volatility), which is a default risk indicator generated from a structural model, to 
actual default rates of a large proprietary dataset of companies. 

 
5  According to Moody’s KMV, Credit Monitor is a software tool that helps monitor and manage credit risk of corporate obligors. 

Credit Monitor reports and calculates the PDs for corporate obligors for a term of one to five years. While private firm models 
are available in Credit Monitor, all data used in this study are extracted from the public firm model, namely the EDFTM Public 
Firm Model. 

 
6  All utility companies are excluded in this study.  
 
7  Among the 46 economies, 31 of them are developed economies (i.e., high-income economies defined by the World Bank) 

which share about 97% of the samples. In terms of geographical regions of the economies, 69% of the sample is from North 
America, 16% is from Asia-Pacific region, and 14% is from Western Europe.    

 
8  This is mainly due to that the definition of default adopted in this study is based on the firms’ S&P’s ratings.  
 
9  According to Moody’s KMV, the default point is the point to which a firm’s asset value must fall before the firm defaults. It is 

approximately equal to the total amount of short-term liabilities, plus half of the long-term liabilities.  However, exact definition 
varies across industries.  Asset values refer to the underlying economic assets of firms instead of the book value reported on 
their balance sheets. For a public firm, its asset value is estimated from its equity market value, equity volatility and liability 
structure (see the Appendix in this paper for details). 
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reported by S&P’s (2001).  This is consistent with the empirical finding by Collin-Dufresne and Goldstein 

(2001) that the long-term target ratio is close to the average leverage ratio of BBB-rated firms.  Following 

Leland (2004), the corporate tax rate, maturity of the bonds, and fractional default costs in the LT model 

are set to be 0.15, 10 years and 0.3 respectively.  For the debt coupon, the value for each sample is 

required to be solved numerically that allows the aggregate market values of the bonds equal to their 

aggregate par values, where the aggregate market values of bonds are given in equation (3) in Leland 

and Toft (1996). 

 

A set of common model parameters is required to be specified.  They are the risk-free interest rate, the 

asset risk premium, and the asset payout rate.  The values of the parameters are based on those used in 

the “base case” in Leland (2004).  The interest rate is set to be constant 5% which falls close to the 

historical average Treasury rate during the period 1996-2006.10  The asset risk premium is set to be 4%.  

This value is consistent with an equity premium of about 6% when the average firm has about 35% 

leverage, which is close to the average leverage ratio of all S&P 500 companies.11  The asset payout rate 

is 6% for all companies, as assumed by Huang and Huang (2002).12   

 

3. Empirical Results 
 

3.1 The Derivation of Real-World Default Probabilities 
 

Using the parameters specified in the pervious section, the theoretical 1-year PDs of firms can be 

computed from the structural models. The theoretical PDs are calibrated to the real-world PDs so that the 

comparisons of PDs against the real-world realised default frequencies are meaningful and consistent.  A 

simple calibration method is adopted to obtain the real-world PDs. For each sample at time t, we define 

the real-world PD for firm i at time t as  

 

    ]2.0 ,0002.0min[ ,,
Q
tit

R
ti PDPD α+=      (1) 

 

where Q
tiPD ,  is the corresponding theoretical PD, and tα  is a scaling factor which is obtained by   

                                                 
10  The original model specifications of the LS and CG models allow stochastic interest rates.  A negative correlation between 

assets and interest rates, as seemed to accord with empirical evidence, reduces default risk, but the effect is very small (see 
Longstaff and Schwartz (1995)). 

 
11   The value of equity premium is consistent with the regression results in Bhandari (1988). 
 
12   The value of the asset payout rate is roughly the weighted average between the average historical dividend yields which is 

about 4% reported by Ibbotson Associates (2002) and the average historical coupon rate which is about 9% during the period 
1973 to 1998, with the weight is set to 35% which is close to the average leverage ratio of all S&P’s 500 companies.   
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where tN  is the number of firms at t, and tEDF  is the average KMV’s EDF of all firms in t. In essence, 

we find a firm-invariant scaling factor of the theoretical PDs such that the average PDs after the 

calibration (i.e. R
tiPD , ) equals to the average EDF. To be consistent with the KMV’s EDF, a lower bound of 

0.0002 and an upper bound of 0.2 are imposed on the real-world PDs. It is worth mentioning that the 

calibration method only requires the average EDF of the portfolio, but not individual firms’ EDFs.13  

 

While an individual R
tiPD , for each company can be derived, a common risk management practice is to 

pool companies with similar default risk into one rating class, and all companies in that rating class are 

assumed to share with a single real-world PD, 
R
tiPD , , which is computed as the average R

tiPD ,  of 

companies in that rating class. Following this practice, this study assumes a credit system of ten rating 

classes and companies at every point in time are evenly distributed in the ten classes according to 

their R
tiPD , .  All assessments are based on

R
tiPD ,  rather than R

tiPD ,  unless otherwise stated.  

 

3.2 Discriminatory Power under Conventional Performance Measures 
 

In this subsection, two conventional measures, the accuracy ratio (AR) and the area under the receiver 

operating characteristic curve (AUROC), are adopted to assess the models’ discriminatory power, the 

ability to distinguish ex-ante between realised defaulting and non-defaulting firms. These two statistics are 

popular in the literature on credit risk model validations (Engelmann et al., 2003). It should be noted that, 

however, this conventional validation technique has its limitation, which has been separately discussed in 

Hamerle et al. (2003), Blochwitz et al. (2005) and Lingo and Winkler (2008). In essence, they point out 

that the AR and AUROC values are dependent on the realised default events from empirical data which 

are stochastic in nature, implying that the AR and AUROC themselves are also stochastic. Therefore, a 

high (low) value of realised AR may not be sufficient to conclude that a model has high (low) 

discriminatory power. In a validation context, they suggest that the expected ARs using the ex ante PDs 

should be derived and compare to the realised ARs. Significant deviations between the expected and 

                                                 
13    In essence, the calibration method adopted in this study is to calibrate the theoretical PDs of firms to the average EDF of the 

portfolio (i.e. calibrate to the “expected” default probabilities of the portfolio). Assessments based on this calibration method 
could shed light on the differences in the discriminatory power between the structural models and EDFs given that all 
structural models are with the same calibration quality as the EDFs portfolio-wise. However, it should be noted that, in practice, 
it is more common to calibrate the theoretical PDs to the average historical default rates of the portfolio. One feasible way to 
do so is to construct a rating system based on the firms’ S&P’s credit ratings and to calibrate the theoretical PDs to the actual 
default rate in each S&P’s rating grade. This alternative calibration method is more practical for those banks cannot access 
information on the average EDF of their loan portfolios. Thanks to the anonymous referee for pointing out this practical issue 
and the suggested solution.   
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realised values of ARs indicate that the PDs generated from the model in question may be miscalibrated. 

This suggests that the validations of discriminatory power and that of calibration quality are interrelated. 

Following the literature, comparisons between realised and expected ARs are also adopted to validate the 

models in this study. These will be discussed in the next subsection.   

 

Despite the limitation of the conventional validation method using realised ARs, comparisons of realised 

AR and AUROC values between the models are still meaningful in a special case where the statistics are 

derived from the same portfolio at the same point in time (see Blochwitz et al. (2005) and Stein (2007)). 

All comparisons of the statistics in this subsection are on this basis.   

 

We derive the AR and AUROC from the receiver operating characteristic (ROC) curve.  The construction 

of the ROC curves requires two important statistics, the hit rate and the false alarm rate.  The calculation 

of these two statistics requires a specification of a PD threshold (i.e. PD*) such that a company is 

predicted as a defaulter if its PD is higher than PD* and is predicted as a non-defaulter otherwise.    

 

The hit rate of PD* is defined as  

 

   
BN

PDHPDHR *)(*)( =       (3) 

 

where H(PD*) is the number of actual defaulters having their PD estimates higher than the threshold PD* 

(i.e. the number of defaulters predicted correctly) and NB is the total number of actual defaulters in the 

sample. 

  

The false alarm rate of PD* is defined as 

 

    
GN

PDFPDFAR *)(*)( =      (4) 

 

where F(PD*) is the number of false alarms that is the number of actual non-defaulters having their PD 

estimates higher than the threshold PD* (i.e. the number of actual non-defaulters that were wrongly 

predicted as defaulters).  NG is the total number of non-defaulters in the aggregate sample.   

 

We set every possible value of the 1-year PD as PD* and calculate the corresponding HR(PD*) and 

FAR(PD*).  ROC curve is obtained by plotting FAR(PD*) in the x-axis against HR(PD*) in the y-axis, with 

FAR(PD*) being sorted by PD* in descending order.  
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A model’s performance is the better the steeper the ROC curve is at the left end and the closer the ROC 

curve’s position is to the point (0,1).  This means that the model is the better, the larger AUROC is.  The 

discriminatory power of a credit risk model can be evaluated by either the AUROC or AR which is defined 

as  

 

   ( ) ( ) 12
1

0
−= ∫ FARdFARHRAR     (5) 

 

where ( ) ( )∫
1

0
FARdFARHR  is the AUROC. Engelmann et al. (2003) prove that there is a one-to-one 

relation between the AR and the AUROC and either one implies another.  Therefore, these two 

performance statistics contain the same information.  The AR is 0 for a random model without 

discriminatory power and it is 1.0 for a perfect model.  Statistical significances of the differences in 

discriminatory power of the models can be evaluated by the non-parametric method proposed by Delong 

et at. (1998) using the AUROC. 

 

In our discriminatory analysis, we set the horizon of default prediction as one year. As the dataset covers 

the period December 1998 to December 2005, it consists of seven non-overlapping one-year windows. 

The first window starts in December 1998 and ends in December 1999 (i.e. the 1999 window); the last 

window starts in December 2004 and ends in December 2005 (i.e. the 2005 window). For each one-year 

window, we define a static portfolio consisting of all non-defaulting firms at the beginning of window. For 

each firm within the portfolio, the 1-year
R
tiPD ,  using the most updated information available at the 

beginning of the window is computed with the calibration method described in subsection 3.1. Default 

status of each firm is then observed at the end of the 1-year window. A firm is classified as a defaulter if at 

least one of the following events has been triggered within the one-year window: (a) the company 

receives “SD” or “D” for its long-term issuer credit rating from S&P’s; (b) Moody’s reports that the 

company defaults; and (c) the company is delisted because of bankruptcy.  The default date is defined as 

the earliest date of the company triggering any one of these three events.  The realised defaults together 

with the
R
tiPD ,  facilitate the construction of the ROC curves, and thus the calculation of the AR and 

AUROC.   

 

Table 4 presents the realised ARs of the LS, CG and LT models for the seven time windows. Those of 

KMV’s EDFs are also provided to serve as a benchmark. The calculation of the discriminatory power 

statistics for EDFs follow the exact procedure of the structural models as described in the last paragraph 

of subsection 3.1.14 This facilitates fair comparisons of the discriminatory power statistics between the 

                                                 
14  Specifically, we assume a credit system of ten rating classes and companies at every point in time are evenly distributed in 

the ten classes according to their EDFs. The resulting average EDFs in the ten rating classes are used to calculate the 
discriminatory power statistics.  
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structural models and EDFs. The results show that the models perform considerably better than a random 

model and have adequate discriminatory power of ranking credit risk of the companies, as their respective 

ARs are significantly larger than zero (i.e. the AR value of a random model).  While the three models are 

generally outperformed by the KMV model in all time windows when comparing their AR estimates15, the 

outperformance of the KMV model becomes less obvious when statistical significances are taken into 

consideration. In fact, using the non-parametric method by Delong et al. (1998), which is advocated by 

Engelmann et al. (2003) in validating credit models, it is found that the KMV model only outperforms the 

CG and LT models in two windows and the LS model in one window at the 5% significance level (Table 5).  

 

Comparing the three structural models themselves, it appears that no model could consistently 

outperform the others statistically. Reflecting this, the null hypothesis of same AUROC (i.e. same 

discriminatory power) cannot be rejected at the 5% significance level for almost all pairs of the models in 

all windows, except in the 2002 window where the CG and LS models outperform the LT model 

statistically. In fact, stronger empirical evidence of similar discriminatory power of the three models is 

found when theoretical PDs of the three models are compared (Table 6).  

 

Based on the empirical findings so far, it appears that the discriminatory power is less dependent on the 

choice of structural models. This is largely due to the fact that while each structural model has its own 

unique characteristics and parameters affecting the PD estimates of firms, all structural models 

structurally share with one common feature in that PD estimates are monotonically increasing with two 

major model inputs, the leverage ratio and the asset volatility. This common feature leads different 

structural models to produce similar risk ranks for identical set of firms in general and thus comparable 

discriminatory power. In fact, for the models under consideration, their 1-year PDs (regardless whether 

the real-world or theoretical PDs being compared) exhibit very high rank-order correlations (Table 7), 

implying similar ARs of the models.  

  

3.3 The Calibration Quality of the Models  
 

The calibration quality is another measure to assess credit risk models by examining how accurate the 

models’ PDs are in predicting the actual default rates. The aim of this subsection is to assess the 

calibration quality based on the
R
tiPD ,  produced by the three models.   

 

As mentioned in subsection 3.2, recent research by Hamerle et al. (2003), Blochwitz et al. (2005) and 

Lingo and Winkler (2008) proposed an “expected AR approach” to assess the calibration quality by 

comparing the expected and realised ARs of a model where the expected AR is defined as the AR value 

that the ex post PDs (i.e. empirical default rates) are identical to the ex ante PDs generated from the 

                                                 
15  Except in the 2002 window where the KMV model is outperformed by the LS model.  
 



 

 9

Hong Kong Institute for Monetary Research       Working Paper No.34/2009 

model (i.e. perfect calibration). To facilitate comparisons between the realised and expected ARs, we 

derive the expected AR for each model in each time window using equation (11) in Lingo and Winkler 

(2008). Figure 1 shows the realised ARs and the corresponding 95% asymptotic confidence intervals 

calculated based on the method by Goodman and Kruskal (1979), as well as their expected ARs. Panels 

A, C and E (i.e. on the left-hand side) show the result based on
R
tiPD , of the CG, LS and LT models 

respectively, while the corresponding results based on the model’s Q
tiPD ,  (i.e. theoretical PDs) are shown 

on the panels (B, D and F) on the right-hand side. There are two significant empirical findings revealed 

from Figure 1. First, no explicit evidence on miscalibration of the models’
R
tiPD ,  is found, as all expected 

ARs fall within the 95% confidence intervals of the AR estimates. In contrast, the theoretical PDs of the 

models (i.e. Q
tiPD , ) are very unlikely to achieve reasonable calibration quality despite some reasonable 

parameter values being used, as they in general exhibit significant deviations between the expected and 

realised ARs in some time windows. This is largely consistent with the fact that the theoretical PDs of 

structural models in general underestimate the real-world PDs in a short-horizon. In addition, while the 

calibration method we adopt is rather simple, the improvement in the calibration quality of the structural 

models is substantial and such improvement seems to be not significantly dependent on the choice of the 

structural models.  

 

We further analyse the comparative performance of the three models using two conventional measures, 

the Brier Score (BS) and the geometric mean probability (GMP). It is worth mentioning at the outset that 

unlike the “expected AR approach”, these measures are more sensitive to the overall default rate of the 

portfolio. The analysis below at best could then only evaluate the comparative performance of the models 

in our dataset.  

 

We first give the definitions of the two measures. The BS is developed by Brier (1950) which is defined as  

 

∑
=

−=
N

i
iiPD

N
BS

1

2)(1 π      (6) 

 

where PDi is the 1-year PD of the company i in a portfolio which contains N companies. iπ  is a binary 

variable for the company i which is defined as 1 if the company defaults, and 0 otherwise.  By definition, 

the BS statistic is the mean square error of default forecasts in which greater discrepancies between 

realised outcomes and forecasts are penalised using a quadratic function (see Rauhmeier and Schuele 

(2005)).  The higher the calibration quality, the smaller the BS is.  The BS statistic ranges from zero to 

one and zero indicates perfect calibration.  

 

 



 

 10

Hong Kong Institute for Monetary Research       Working Paper No.34/2009 

The GMP is defined as   

 

   ))]1)(1ln())([ln(1exp(
1
∑
=

−−+=
N

i
iiii PDPD

N
GMP ππ   (7) 

 

which ranges from 0 to 1, with 1 indicating perfect calibration.  

 

Tables 8 presents the differences in the BS for each pair of the models (denoted by 

tjtitji BSBSBS ,, ;, −=∆  where tiBS , refers to the BS for model i in window t) and their 95% confidence 

levels (i.e. figures within parentheses), which are derived from a nonparametric bootstrapping method.16 

From the table, the null hypothesis of no difference in the BS  between models i and j in t (i.e. 

0: ,, ;,0 =−=∆ tjtitji BSBSBSH ; same calibration quality)can be tested. Specifically, the null hypothesis 

can be rejected at the 5% significance level whenever zero falls outside the 95% confidence interval. 

Model i is said to outperform (underperform) model j in t in terms of the BS if the upper (lower) bound of 

the confidence interval is negative (positive).   

 

Similar hypothesis testing based on the GMP can be conducted using the statistics given by Table 9 (i.e. 

0: ,, ;,0 =−=∆ tjtitji GMPGMPGMPH  where tiGMP , denotes the GMP for model i in window t). The 

only difference is that model i is said to outperform (underperform) model j in t in terms of the GMP if the 

lower (upper) bound of the confidence interval is positive (negative). 

 

From Table 8, it appears that no model consistently outperforms the others, as the null hypothesis of no 

difference in the BS cannot be rejected at the 5% significance level in nearly all cases. The only exception 

is that the LS model is found to outperform the CG model in 2002.  However, the statistical results based 

on the GMP in Table 9 show limited evidence that the LS model outperforms the CG and LT models in 

some subsamples. Focusing on the two “exogenous default boundary” models, the LS model outperforms 

the CG model in three out of seven windows, suggesting that the assumption of a constant target 

leverage ratio of companies (in the CG model) may not give sufficient close description of the dynamics of 

the leverage ratios of non-financial firms.  Similarly, the LS model is found to outperform the LT model in 

two windows statistically. This may indicate that the consideration of “endogenous default boundary” (as 

in the LT model) may not improve the calibration quality. Nevertheless, it is difficult to conclude that the 

LS model could outperform the two models consistently over time, as there is even larger number of 

                                                 
16  A similar method is also adopted by Güttler (2005).  We randomly draw N companies with replacement from the original 

sample in time t, where N is the number of companies in the original sample in t.  The process is repeated by B times such 
that B bootstrap samples of size N each are created. ∆BSi,j;t is calculated for each bootstrap sample b (where b = 1,…, B) and 
the resultant statistic is denoted by∆BSb

i,j;t. B is set to be 5,000 to give a reliable estimate. The distributional properties of 
∆BSi,j;t are revealed from the vector },...,,...,{  ;, ;,

1
 ;,

B
tji

b
tjitji BSBSBS ∆∆∆ .  The 95% confidence interval is defined as the values 

covered by the 2.5 and 97.5 percentiles of the vector.  For details about the bootstrap methods, see Elfron and Tibshirani 
(1993). 
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cases in the seven windows that the null hypothesis of no difference in GMP cannot be rejected (i.e. 4 for 

the CG model against the LS model, and 5 for the LS model against the LT model).   

 

4. Conclusion 
 

Using a large dataset of listed non-financial companies in 46 economies during the period 1998 to 2005, 

this paper compares discriminatory power and calibration quality of three well-known structural models. 

Empirical evidence suggests that the models have adequate discriminatory power and the differences 

between them are not material. For the assessments of calibration quality using the “expected AR 

approach”, while the theoretical PDs from the models are found to be miscalibrated even reasonable 

values of model parameters being used, the real-world PDs based on a simple calibration method could 

improve the calibration quality significantly. And the improvements are found not significantly dependent 

on the choice of the structural models.   

 

Overall, we do not find any model can consistently outperform the others over time in terms of 

discriminatory power and calibration quality. However, evidence based on the GMP statistics suggests 

that the LS model marginally outperforms the LT and CG models in some subsamples. Despite it is rather 

limited evidence, the outperformance of the LS model relative to the LT model may suggest that structural 

models incorporating “endogenous default boundary” or/and with more parameters may not improve 

default prediction power significantly.  

 

Similarly, the outperformance of the LS model relative to the CG model in some subsamples may suggest 

that the assumption of a constant target leverage ratio cannot describe the dynamics of the leverage 

ratios of non-financial firms adequately and thus need to be refined.  In view of recent empirical findings 

and theoretical studies that the dynamics of the leverage ratio of non-financial companies are mean 

reverting with a time-varying target ratio (see Roberts (2002), Childs et al. (2005), Hennessy and Whited 

(2005), Titman and Tsyplakov (2005), Hui et al. (2006), Flannery and Rangan (2006), Flannery et al. 

(2008) and Liu (2009)), empirical comparisons between “exogenous default boundary” models with a 

time-varying target leverage ratio and other structural models would give a clearer picture on the 

dynamics of financial structure of companies that affect the accuracy of the model on default risk 

estimations.   
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Table 1. Distribution of S&P’s Ratings of the Samples 
 
S&P’s ratings Numbers of sample companies Percentage share (%) 

AAA 45 0.5 

AA+ 34 0.4 

AA 119 1.4 

AA- 229 2.7 

A+ 364 4.3 

A 655 7.7 

A- 608 7.2 

BBB+ 814 9.6 

BBB 1,026 12.1 

BBB- 832 9.8 

BB+ 591 7.0 

BB 738 8.7 

BB- 910 10.7 

B+ 787 9.3 

B 394 4.6 

B- 217 2.6 

CCC+ or below 123 1.4 

Total 8,486 100.0 

 

 

Table 2. Distribution of Industries of the Samples 
 
Industry Numbers of sample companies Percentage share (%) 

Basic Materials 979 11.5 

Communications 1,188 14.0 

Consumer, Cyclical 1,735 20.4 

Consumer, Non-cyclical 1,604 18.9 

Energy 754 8.9 

Industrial 1,725 20.3 

Technology 501 5.9 
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Table 3. Distribution of Economies of the Samples  
 

Economy 
Number 

of 
samples 

% share Economy 
Number 

of 
samples 

% share 

Argentina 37 0.44 Italy 32 0.38 

Australia 231 2.72 Japan 932 10.98 

Austria 6 0.07 South Korea 25 0.29 

Bahamas 10 0.12 Luxembourg 15 0.18 

Belgium 5 0.06 Mexico 84 0.99 

Bermuda 35 0.41 Netherlands 102 1.20 

Brazil 20 0.24 Netherlands Antilles 2 0.02 

Canada 370 4.36 New Zealand 47 0.55 

Cayman Islands 10 0.12 Norway 32 0.38 

Chile 35 0.41 Philippines 21 0.25 

China 6 0.07 Poland 2 0.02 

Denmark 7 0.08 Portugal 9 0.11 

Dominican republic 5 0.06 Russia 27 0.32 

Finland 42 0.49 Singapore 26 0.31 

France 188 2.22 South Africa 9 0.11 

Germany 153 1.80 Spain 31 0.37 

Greece 16 0.19 Sweden 14 0.16 

Hong Kong, China 29 0.34 Switzerland 57 0.67 

Hungary 2 0.02 
Taiwan, province of 

China 
26 0.31 

India 1 0.01 Thailand 15 0.18 

Indonesia 23 0.27 Turkey 4 0.05 

Ireland 16 0.19 UK 463 5.46 

Israel 24 0.28 USA 5,240 61.75 

   Total 8,486 100% 
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Table 4. Realised Accuracy Ratios of CG, LT, and CG Models in the Seven Time Windows 
 
Time Windows CG model LS model LT model KMV model 

1999 0.8299 0.8299 0.8302 0.8378 

2000 0.8247 0.8553 0.8451 0.8664 

2001 0.7138 0.7256 0.7256 0.7831 

2002 0.8069 0.8197 0.7554 0.8142 

2003 0.7687 0.8160 0.7890 0.8171 

2004 0.7360 0.7504 0.7475 0.7946 

2005 0.8685 0.8685 0.8685 0.8693 

 
 
Table 5. Statistical Analysis of the Differences in the Discriminatory Power between the Models 

Based on the Real-World PDs. 
 

Model A CG LS LT 

Model B LS LT KMV LT KMV KMV 

Time 

Windows 
AUROCA- AUROCB 

       
1999 0.0000 -0.0001 -0.0040 -0.0001 -0.0040 -0.0038 

2000 -0.0153 * -0.0102 -0.0208 0.0051 -0.0056 -0.0107 

2001 -0.0059 -0.0059 -0.0347 *** 0.0000 -0.0288 *** -0.0288 *** 

2002 -0.0064 0.0258 *** -0.0036 0.0321 *** 0.0027 -0.0294 *** 

2003 -0.0236 * -0.0101 -0.0242 * 0.0135 -0.006 -0.0141 

2004 -0.0072 -0.0058 -0.0293 ** 0.0014 -0.0221 * -0.0235 * 

2005 0.0000 0.0000 -0.0004 0.0000 -0.0004 -0.0004 

 
Notes:  
(1) AUROCA- AUROCB refers to the AUROC of model A minus the AUROC of model B. 
(2) *, **, and *** denote statistical significances at the 10%, 5%, and 1% levels, respectively. 
(3) Statistic significances of AUROCA- AUROCB are determined using the method proposed by Delong et al. (1988).  
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Table 6. Statistical Analysis of the Differences in the Discriminatory Power between the Models 
Based on the Theoretical PDs.  

 

Model A CG LS LT 

Model B LS LT KMV LT KMV KMV 

Time 

Windows 
AUROCA- AUROCB 

       
1999 0.0000 0.0119 0.0000 0.0119 0.0000 -0.0119 

2000 -0.0106 0.0097 -0.0310 * 0.0204 -0.0204 -0.0408 

2001 -0.0154 0.0142 -0.0337 ** 0.0296 * -0.0183 -0.0479 ** 

2002 -0.0097 * 0.0096 -0.0197 * 0.0193 -0.0100 -0.0293 

2003 -0.0135 0.0101 -0.0141 0.0236 -0.0006 -0.0242 

2004 -0.0577 -0.0361 -0.0870 * 0.0216 -0.0293 -0.0509 

2005 0.0000 0.0000 -0.0475 0.0000 -0.0475 -0.0475 

 
Notes:  
(4) AUROCA- AUROCB refers to the AUROC of model A minus the AUROC of model B. 
(5) *, **, and *** denote statistical significances at the 10%, 5%, and 1% levels, respectively. 
(6) Statistic significances of AUROCA- AUROCB are determined using the method proposed by Delong et al. (1988).  
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Table 7. Rank-Order Correlations between the PDs Generated from the Models   
 
 

Theoretical PDs, Q
tiPD ,  

 CG model LS model LT model 

LS model 0.9962   

LT model 0.9971 0.9994  

KMV model 0.9881 0.9970 0.9917 

 

Real-world PDs, 
R
tiPD ,  

 CG model LS model LT model 

LS model 0.9888   

LT model 0.9821 0.9887  

KMV model 0.9775 0.9884 0.9793 

 
Note: The rank-order correlations are calculated using the full sample of 8,486 non-financial firms.  
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Table 8. Statistical Comparisons of the Calibration Quality between the Models Based on the Brier 
Score (BS). 

 

Model i CG LS 

Model j LS LT LT 

Time windows, t tjtitji BSBSBS ,, ;, −=∆  

1999 
-0.00001 

(-0.00022, 0.00022) 

0.00004 

(-0.00021, 0.00029) 

0.00002 

(-0.00017, 0.00022) 

2000 
0.00013 

(-0.00013, 0.00041) 

0.00000 

(-0.00028, 0.00029) 

0.00002 

(-0.00014, 0.00015) 

2001 
0.00031 

(-0.00006, 0.00105) 

0.00028 

(-0.00010, 0.00102) 

-0.00080 

(-0.00205, 0.00054) 

2002 
0.00053 * 

(0.00007, 0.00126) 

-0.00065 

(-0.00184, 0.00046) 

-0.00116 

(-0.00244, 0.00005) 

2003 
-0.00017 

(-0.00095, 0.00059) 

0.00016 

(-0.00011, 0.00071) 

0.00025 

(-0.00064, 0.00127) 

2004 
0.00016 

(-0.00002, 0.00059) 

0.00015 

(-0.00004, 0.00059) 

-0.00006 

(-0.00019, 0.00009) 

2005 
0.00000 

(-0.00003, 0.00003) 

0.00000 

(-0.00003, 0.00003) 

0.00013 

(-0.00004, 0.00036) 

 
Notes: 
(1): Figures in the parentheses are the 95% confidence intervals.  
(2): * denotes that the null hypothesis of 0,, ;, =−=∆ tjtitji BSBSBS  can be rejected at the 5% significance level.  
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Table 9. Statistical Comparisons of the Calibration Quality between the Models Based on the 
Geometric Mean Probability (GMP). 

 

Model i CG LS 

Model j LS LT LT 

Time windows, t tjtitji GMPGMPGMP ,, ;, −=∆  

1999 
-0.00026 

(-0.00163, 0.00093) 

0.00076 

(-0.00102, 0.00380) 

0.00101 

(-0.00098, 0.00496) 

2000 
-0.00494 * 

(-0.01296, -0.00010) 

-0.00145 

(-0.00735, 0.00223) 

0.00349 

(-0.00048, 0.01308) 

2001 
-0.00525 * 

(-0.01359, -0.00053) 

-0.00148 

(-0.00864, 0.00333) 

0.00377 * 

(0.00070, 0.00799) 

2002 
-0.00438 * 

(-0.01037, -0.00045) 

0.00365 

(-0.00472, 0.01042) 

0.00802 * 

(0.00296, 0.01345) 

2003 
-0.00285 

(-0.00892, 0.00136) 

-0.00206 

(-0.00869, 0.00156) 

0.00079 

(-0.00272, 0.00483) 

2004 
-0.00300 

(-0.01097, 0.00017) 

-0.00229 

(-0.00936, 0.00154) 

0.00072 

(-0.00034, 0.00339) 

2005 
-0.00007 

(-0.00050, 0.00038) 

0.00023 

(-0.00029, 0.00096) 

0.00030 

(-0.00010, 0.00117) 

   
Notes: 
(1): Figures in the parentheses are the 95% confidence intervals.  
(2): * denotes that the null hypothesis of 0,, ;, =−=∆ tjtitji GMPGMPGMP  can be rejected at the 5% significance level.  
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Figure 1. The Analysis of Realised and Expected ARs of the Structural Models 
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Figure 1. The Analysis of Realised and Expected ARs of the Structural Models (Continued) 
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Appendix 
 

The KMV model produces a PD for each firm at any given point in time.  To calculate the PD, the model 

consists of the following procedures: estimation of the market value and volatility of the company’s asset; 

calculation of the distance-to-default; and scaling of the distance-to-default to actual PD using a 

proprietary default dataset.  

 

The KMV model estimates the market value of a company’s asset by applying the Merton model.17  The 

KMV model makes two assumptions.  The first is that the total value of a firm is assumed to follow 

geometric Brownian motion, 

 

VVVdzVdtdV σµ +=       (A1) 

 

where V is the market value of the firm’s assets, µis the expected continuously compounded return on V, 

Vσ  is the volatility of firm’s asset value and dzV is a standard Weiner process.  The second assumption 

of the KMV model is that that the capital structure of the firm is only composed of equity, short-term debt 

which is considered equivalent to cash, long-term debt and convertible preferred shares.  With these 

simplifying assumptions it is then possible to derive analytical solutions for the value of equity E, and its 

volatility Eσ : 

 

),,,,( rcKVfE Vσ=                                             (A2) 

),,,,( rcKVg VE σσ =                                             (A3) 

 

where K denotes the leverage ratio in the capital structure, c is the average coupon paid on the long-term 

debt and r the risk-free interest rate.18, 19 

 

                                                 
17  See Vasicek (1997) and Kealhofer (1998, 2003). 
 
18  In the simple Merton’s framework, where the firm is financed only by equity and a zero coupon debt, equity is a call option on 

the assets of the firm with striking price being the face value of the debt and maturity being the redemption date of the bond.  
The equity value of a firm satisfies 

( ) ( )21 dKNedVNE rT−−=  
where, d1 is given by 

( ) ( )
T

TrKV
d

V

V

σ
σ 2//ln 2

1
++

=  

Tdd Vσ−= 12  and T is the time-to-maturity of the debt. 

 
19  It can be shown that VVEE σησ ,=  where VE ,η  denotes the elasticity of equity to asset value, i.e. 

)/)(/(, VEEVVE ∂∂=η .   
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The KMV model estimates Eσ  from market data (i.e. from either historical stock returns data or from 

option implied volatility data).  An iterative technique is used to simultaneously solve equations (A2) and 

(A3) numerically for values of V and Vσ .20 

 

Using the values of V and Vσ , the KMV model computes an index called “distance-to-default” (DD).  DD 

is the number of standard deviations between the mean of the distribution of the asset value, and a 

critical threshold, the “default point”, set at the par value of current liabilities including short term debt to 

be serviced over the time horizon, plus half the long-term debt.  The default point F is based on KMV’s 

observations from a large sample firms that default when the asset value reaches a level somewhere 

between the value of total liabilities and the value of short-term debt.  DD can be calculated as: 

 

    
( ) ( )

T
TFV

DD
V

V

σ
σµ 2//ln 2−+

=     (A4) 

 

where µ is an estimate of the expected annual return of the firm’s assets, and T is a forecasting horizon.  

 

Based on historical information on a large sample of firms, the DD can be mapped to the corresponding 

implied PD for a given time horizon.21  This implied PD is the EDF of the firm.22 

 
 

 

 

                                                 
20  Vasicek (1997) notes that the numerical technique is complex due to the complexity of the boundary conditions attached to 

the various liabilities. 
 
21  In addition to the empirical approach of the DD-to-EDF mapping, there are some other notable differences between the 

Merton model and the current version of the KMV model in practice. According to Moody’s KMV’s information, these include: 
(1) the KMV model adopts a combined approach to estimate asset volatility of a firm in which the estimate is a weighted 
average of empirical asset volatility and modelled asset volatility.  The former is estimated from historical time series of asset 
returns, while the latter estimates volatility based on firms’ size, income, profitability, industry and geographical region; (2) the 
model also allows default to occur at or before maturity, while the original Merton model allows default to occur only at 
maturity; and (3) the model is capable of dealing with a broader class of financial liabilities including preferred stocks and 
convertible bonds. 

 
22  The probability below the default point is N(-DD) which is the EDF in the simple Merton’s framework.  
 


