

P0026
Kenett_17333_cmyk.jpg

SOFTWARE PROCESS
QUALITY

PROCESS
QUALITY
Management and Control

RON S. KENETT
KPA Ltd. and
Tel Aviv University
Herzlia Pituah, Israel

EMANUEL R. BAKER
Software Engineering Consultants, Inc.
Los Angeles, California

M A R C E L

MARCEL DEKKER, INC m
D E K K E R

NEW YORK - BASEL

ISBN: 0-8247-1733-3

This book is printed on acid-free paper.

Headquarters
Marcel Dekker, Inc.
270 Madison Avenue, New York, NY 10016
tel: 212-696-9000; fax: 212-685-4540

Eastern Hemisphere Distribution
Marcel Dekker AG
Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland
tel: 44-61-261-8482; fax: 44-61-261-8896

World Wide Web
http:/ /www.dekker.com

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, write to Special Sales/Professional Marketing at the
headquarters address above.

Copyright 1999 by Marcel Dekker, Inc. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, mi-
crofilming, and recording, or by any information storage and retrieval sys-
tem, without permission in writing from the publisher.

Current printing (last digit):
10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

COMPUTER-AIDED ENGINEERING

Series Editor

Mark E. Coticchia
Carnegie Mellon University
Pittsburgh, Pennsylvania

1. Integrated Computer Network Systems, Frank Welch
2. CAD/CAM/CAE Systems: Justification · Implementation · Productivity

Measurement, Second Edition, Revised and Expanded, Mark E.
Coticchia, George W. Crawford, and Edward J. Preston

3. Computer Graphics for CAD/CAM Systems, Jack E. Zecher
4. Computer-Aided Graphics and Design: Third Edition, Revised and

Expanded, Daniel L. Ryan
5. Methods and Tools for Applied Artificial Intelligence, Dobrivoje Popovic

and Vijay P. Bhatkar
6. Software Process Quality: Management and Control, Ron S. Kenett

and Emanuel R. Baker

ADDITIONAL VOLUMES IN PREPARATION

To the memory of my parents and father-in-law, Raymonde and Aby
Kenett and Yechiel Steiner, and to my special mother-in-law, Frida
Steiner, who are my links to the past and created the present and
the future.

To my wife, Sima, to my daughter and son-in-law, Dolav and
Nir, and to my three sons, Ariel, Dror, and Yoed. They have all con-
tributed, in many ways, to this book.

RSK

I would like to dedicate this book to the memory of my parents, Rabbi
Morris and Yetta Baker, who taught me (among other things) the
virtues of diligence, study, and hard work. I would also like to
dedicate this to my wife, Judy, my sons, Todd and Russ, and my
daughter-in-law, Heidi, who share in this accomplishment.

ERB

Series Introduction

The Computer-Aided Engineering series represents a commitment
by Marcel Dekker, Inc., to develop a book program with the goal of
providing the most current information in a form easily accessible
to practitioners, educators, and students. Titles in the series include
works focused on specific technologies, as well as more comprehen-
sive texts and reference books. All titles will present fundamental
principles along with the latest methodologies.

The term computer-aided engineering (CAE) has widespread
meaning throughout engineering disciplines as well as for this
series. The series encompasses all computer-based applications
used in design, manufacturing, and analysis. Various computer
platforms, hardware configurations, and software programs are
addressed, along with the trends, industries, and state-of-the-art
applications. The overriding emphasis is on the use of computer
technology as related to current engineering processes, methods,
and tools.

Computer-aided engineering is a science and technology of
great significance and is fundamental to total quality. It generally
is faster, less expensive, and more precise than the conventional
‘‘test and build’’ approach. CAE provides commercial organizations
with a competitive advantage, resulting in less product development
time and cost and offering alternatives that could not be considered
in the past. Considering the competitiveness in which engineering
operates in today’s world, business without this technology will not
survive in the long term.

Mark E. Coticchia

v

Foreword

Software quality is seen by many as a mysterious topic.
No one who has experienced the consequences of bad software

doubts the importance of quality in software. Yet, of all the ‘‘myster-
ies’’ of producing software, none are more obscure than those re-
lating to quality. As a result, software quality is often seen as an
elusive and mysterious subject, perhaps the most ignored topic in
the world of software development as well as in the realm of research
and education.

Actually, ‘‘mystery’’ is the wrong word to describe how many
people seem to view the subject of software quality. ‘‘Myth’’ might
be a better term. Just as almost everyone knows what quality is
(or, so they think), most people hold certain beliefs about how it is
achieved. The problem is that many of those beliefs about how one
can obtain software quality are false.

Probably the most prevalent myth is that, while quality is im-
portant, delivering something now is essential. Following closely in
popularity are various fallacies, including:

Quality is the responsibility of someone else, not me.
We will add it in the next release.
It is a technical problem that the programmers must deal with.
If we just had better development tools, people, or manage-

ment, we wouldn’t have a quality problem.
We need to add a quality inspection function.

Kenett and Baker, in this highly pragmatic book that is also well-
grounded in theory, go a long way toward exposing these myths for
what they are and providing correct principles with which to replace

vii

viii Foreword

them. They bring a rare blend of extensive experience, deep study,
and broad domain of application to the topic.

The authors’ key idea is completely in line with well-proven
theories and the experience of the best developers of quality soft-
ware. While quality is in the eye of the beholder, we nonetheless can
define it for any specific piece of software and achieve it by devising
an appropriate system of processes that shapes what happens as we
move from concept to delivered system through continual enhance-
ment and change.

Although I have tried for many years to help managers and
technical developers improve the quality of their software pro-
cesses—and thus of the resulting software—and I learned a good
deal from this book about achieving quality software. I know that
you will, too.

Peter A. Freeman, Ph.D.
Dean and Professor

College of Computing
Georgia Institute of Technology

Atlanta, Georgia

Preface

Software presents both an opportunity and a threat. Software runs
our lives. The list of applications in which software is a critical com-
ponent is endless: elevators, airlines, telecommunications, medical
devices, education, and countless others. Data from the Software En-
gineering Institute indicates that approximately 60% of software
development organizations that have had formal assessments de-
signed to determine how their software is developed are at the lowest
level of capability. These assessments are based on the Capability
Maturity Model—a framework for achieving process improvement.
This lowest level is characterized as ad hoc and chaotic, having virtu-
ally nothing in the way of organized project management or software
engineering practices. Over 600 organizations worldwide have gone
through such assessments. These are organizations that have either
embarked on improvement efforts of their software development
process or made a commitment to do so. If we add in all the organiza-
tions that have not had assessments performed, or have no plans to
implement process improvement, we estimate that the number of
organizations at the lowest level is probably well in excess of 80%.

What is the consequence of this low level of process capability
operating in most organizations developing software? Let’s look at
personal computers. How many users are really happy with the
quality of their software products? Horror stories about people losing
hours of work because the computer locked up at an inopportune
time are common topics of conversations in social and business meet-
ings. What about mainframe software? Newspapers frequently de-
scribe how bugs in telephone switching software cause catastrophic

ix

x Preface

outages, or how bank information systems lose track of millions of
dollars in accounts.

Processes are the link between past, present, and future activi-
ties. We believe that following a highly capable process does make
a difference. Achieving such process capability requires continuous
improvement.

What are the barriers to process improvement? A nonexhaus-
tive list includes:

Lack of data: Many organizations have no idea what their cur-
rent levels of performance are. They have never imple-
mented effective measurement programs, and have very
little idea whether they are performing well or are in deep
trouble. For instance, they do not know if the bug rate
in their delivered software is at, above, or below industry
norms, or how long it really takes to deliver a given set
of capabilities. For many companies that do collect data,
the data is never used, or is not used properly.

Extreme focus on time to market: Working on process improve-
ment is perceived as getting in the way of getting new
products (or updates to existing products) out the door.
Some companies feel that, while process improvement
would be nice to have, they just can’t spare the people or
the time.

Cost: While there is often money to acquire new tools or com-
puting equipment, there is usually little money allocated
to process improvement. It’s not perceived as something
that requires a capital investment.

Managers who don’t understand process: Many people can rec-
ognize the importance of process in activities such as car
manufacturing or chemical processing, but don’t recog-
nize the fact that it plays an important role in software
and hardware development. Many software development
organizations are populated with ‘‘developers’’ who know
how to hack out code under extreme time pressure, but
have never had the opportunity to work in an environ-
ment in which development was focused upon quality.
These people later become software project leaders or soft-
ware development managers. Why would they require

Preface xi

their developers to follow a process as managers when
they never followed one as developers?

The educational pipeline: Virtually no schools teach software
engineering as an undergraduate program. Few computer
science programs teach this curriculum from the perspec-
tive of a development cycle process. Any appreciation of
the value of process is picked up along the way through
experience.

Passive management: Many senior managers who decide to im-
plement process improvement believe that it can be done
by ‘‘decree.’’ They often do not hold their middle managers
accountable for the success or failure of process improve-
ment. Many manage process improvement by ‘‘remote
control’’. The middle managers, in many instances, are
like kamikaze pilots with several targets to hit, all at once.

Undoubtedly, there are other factors, as well, that get in the
way of effective process improvement. But process improvement
doesn’t have to be so hard. Process improvement can be implemented
and managed effectively. It takes careful planning and monitoring,
but it can be done. SOFTWARE PROCESS QUALITY: Management
and Control presents a methodology for establishing the current sta-
tus of a software development process and laying out a reasoned
plan for process improvement. The book identifies practical ways of
implementing measurement programs used to establish current lev-
els of performance and baselines against which to measure achieved
improvements.

The book provides details and examples of measures and met-
rics that can be used to establish a baseline, as well as for use in
monitoring process improvement projects. The book concludes with
a realistic case study to illustrate how all the methods, tools and
techniques discussed in the book fit together.

SOFTWARE PROCESS QUALITY: Management and Control
was designed to be practical but not necessarily exhaustive. Our ob-
jective was to provide the reader with a workable approach for
achieving cost-effective process improvement.

Professor Gideon Langholz of Tel Aviv University’s School of
Engineering, who convinced the first author, in 1983, to design a
graduate course on software reliability, planted the seed for this

xii Preface

book. The course grew in popularity and is now entitled ‘‘Quantita-
tive Methods in Software Development.’’ Many thanks are due Pro-
fessor Langholtz for his vision, ongoing support, and friendship. Fi-
nally, we would like to thank Russell Dekker and Brian Black and
all the people at Marcel Dekker, Inc., associated with this book for
their patience. This book has been in work for some time, and they
never gave up on us.

Ron S. Kenett
Emanuel R. Baker

Contents

Series Introduction by Mark E. Coticchia v

Foreword by Peter A. Freeman vii

Preface ix

1. A Framework for Software Quality 1

2. Basics of Quality Management and Continuous Process
Improvement 21

3. ISO 9000, SEI Capability Maturity Model (CMM), and
Continuous Software Process Improvement 55

4. Software Measurements Programs: Strategies and
Implementation Issues 97

5. Quality of Software Products and Documents 129

6. Software Reliability Control 155

7. Software Review and Inspection Processes 179

8. Software Development Management Dashboards 207

Author Index 235

Subject Index 237

xiii

1
A Framework for Software Quality*

1.1 INTRODUCTION

Quality, in some respects, is an elusive characteristic—not because
it is difficult to achieve (once we decide what it is), but because it is
difficult to describe. A universally accepted and commonly under-
stood definition is difficult to achieve. The relationship between
quality and the factors that affect it is even more complex to de-
scribe. Consequently, when two people are discussing ‘‘quality,’’ they
are often talking about different things.

In order to establish a frame of reference for the concepts in
this book, a definition of quality and a description of the factors af-
fecting it are necessary. This introductory chapter sets the stage by
providing our definition and our concept of the relationship between
quality and its influencing factors.

The relationship between the quality of a software product and
the organization responsible for producing it is multi-faceted. This
relationship depends upon many factors, including the business
strategy and business structure of the organization, available talent,
and the processes and resources used to produce the product. The
processes, which are of particular concern, consist of the develop-
ment activities selected and implemented by the organization to at-
tain the product quality desired.

* Adapted from Chapter 4, ‘‘Software Quality Program Organization,’’
Handbook of Software Quality Assurance, 2nd edition, G. Gordon Schul-
meyer and James I. McManus, eds., Van Nostrand Reinhold, New York,
1992.

1

2 Chapter 1

To better understand the significance of these relationships,
let’s consider the following precepts. First, consider our definition of
software quality. Software quality is defined as, ‘‘The degree to
which a software product possesses a specified set of attributes nec-
essary to fulfill a stated purpose’’ [1]. If we dig beneath the surface
of this definition, the following points become apparent.

• A large number of the project personnel are involved in im-
plementing the requirements (i.e., impacting the ‘‘degree to
which [the] software product possesses [the] specified set of
attributes’’).

• Some of the project personnel are (or should be) involved in
explicitly defining the project requirements (i.e., defining
the ‘‘stated purpose’’ and the corresponding ‘‘set of attri-
butes necessary to fulfill’’ it).

• Some more of the project personnel are (or should be) in-
volved in determining how well the requirements have been
met (i.e., determining the ‘‘degree to which [the] software
product possesses [the] specified set of attributes’’). These
personnel are the testers, software quality assurance (SQA)
personnel, and other personnel involved in performing soft-
ware product and process quality evaluations.

• Another group of project personnel are (or should be) in-
volved in performing control functions to ensure that inad-
vertent actions don’t result in a degradation of the quality
that has already been built into the software. These person-
nel are project leaders, configuration management (CM)
staff, and SQA personnel.

What emerges from this description is the fundamental and
well-known principle that ‘‘Quality is everybody’s business.’’ As can
be seen, virtually everyone working on a project affects the quality
of the software product in some way; however, only those producing
the product actually build the quality into it. When we consider how
software development projects are organized, this translates to:
‘‘Quality is affected by many, but effected by few.’’ Because of this,
the ultimate responsibility for the quality of the software product
lies with management: line and project management. It is manage-
ment’s responsibility to integrate the efforts of ‘‘the many’’ and ‘‘the
few’’ and bring them to bear on the development or maintenance
effort to accomplish the quality objectives.

Software Quality 3

Secondly, there is a method for structuring projects and organi-
zations to control the product quality, and that is to implement a
software quality program (SQP). The SQP has three critical ele-
ments, each of which will be described below. Each of these elements
spawns a series of tasks, each of which has some impact on the qual-
ity of the software product. Management must determine the alloca-
tion of these tasks and assign them to the available personnel or
organizations supporting the project, express them in a SQP plan,
and obtain the commitment of the supporting organizations. The
SQP plan may be a separate plan or may be an integral part of the
software development plan (e.g., the software project management
plan).

1.2 SOFTWARE QUALITY PROGRAM

The software quality program is the overall approach to influence
and determine the level of quality achieved in a software product.
It consists of the activities necessary to:

• Establish requirements for the quality of a software
product.

• Establish, implement, and enforce methodologies, processes
and procedures to develop, operate, and maintain the soft-
ware.

• Establish and implement methodologies, processes, and
procedures to evaluate the quality of a software product and
to evaluate associated documentation, processes, and activi-
ties that impact the quality of the product.

Figure 1.1 illustrates the elements of the SQP.
The foundation of the software quality program is not how well

one can measure product quality nor the degree to which one can
assess product quality. While these are essential activities, they
alone will not attain the specified quality. Quality can only be built
in during the development process. Software quality cannot be
tested, audited, evaluated, measured, or inspected into the product.
This is a concept that is not well understood by many software devel-
opment organizations, whether they are organizations that develop
software for sale, develop software only for in-house use, or develop
software under a contractual arrangement. Furthermore, it is not

4 Chapter 1

Figure 1.1 Software quality elements.

sufficient to pay attention to only the development aspects of the
software enterprise. Once the quality has been built in, the op-
erating and maintenance processes must not degrade it. It is that
understanding that is the basis for the software quality program.

The foundation of the SQP stems from the definition of software
quality. It is the concept that product quality means, in effect,
achieving its intended end use, as defined by the user or customer.
Does the software do what it is supposed to do? In other words, does
it correctly meet requirements that accurately capture what the user
or customer wants? These requirements include the software func-
tional and performance requirements, and also include require-
ments for maintainability, portability, interoperability, and so on.
The significance of this concept is that product requirements are, in
reality, the quality requirements. And they must accurately capture
and reflect the way that the user/customer wants to use the soft-
ware.

Figure 1.2 illustrates the elements of the software quality pro-
gram and how it affects software quality. The interaction of the SQP
with the other parts of the project elements, as depicted in the figure,

Software Quality 5

Figure 1.2 What creates quality software?

is necessarily complex. That involvement is at all levels of the project
organization and takes place throughout the project’s life. In some
cases, the SQP directs the other activities; in other circumstances,
it can only influence those activities. In any case, all the project ac-
tivities, in some way, affect software product quality.

The software quality program includes both technical and man-
agement activities. For instance, if we look at the element of the SQP
concerned with methodologies for software development, enforcing
these methodologies (in order to build quality into the software) is
a management activity, while the specification of the methodologies
is a technical activity.

1.2.1 Requirements Management

The first element of the software quality program is concerned with
the establishment of the requirements for the software to be pro-
duced on a project. These include the processing requirements as
well as the requirements for the design of the databases. Processing
requirements, as used here, refer to the functional, performance, se-
curity, safety, ‘‘ility’’ (i.e., reliability, maintainability, characteris-
tics), and other related attributes that the software should possess.

As previously pointed out, the requirements for the software
are, in fact, the requirements for the quality of the software. Conse-
quently, the requirements must accurately reflect the functionality,
performance, etc., that the customer or user expects to see in the
software.

6 Chapter 1

This activity includes not only defining the requirements but
also baselining (formalizing) them, as well. This means that once
the definition of the requirements are reasonably stable, they must
be formally documented and placed under the control of a centralized
authority. They should not be changed by any individual acting
alone, but, rather, should be changed only after representatives of
other applications that interface with the application for which the
change is contemplated concur that (1) there is no impact on them,
or (2) if there is an impact, that it is acceptable. [For a more detailed
discussion of the mechanics of software configuration management,
see Reference 2]. However, merely defining and formalizing the re-
quirements is insufficient. The requirements must be enforced. The
developers must not be allowed to ignore them or unilaterally devi-
ate from them. This can often occur. No developer can assume that
he or she is better qualified than the customer or the user to know
what is needed. Such assumptions can often lead to the production
of software that doesn’t meet customer needs. Intentional deviation
may not always cause significant problems (see Reference 3), but the
potential is clearly there.

The process of defining and establishing the requirements and
controlling changes to them involves interfaces with the other two
elements of the SQP: establishment of methodologies and quality
evaluation. Two kinds of interfaces with the establishment of meth-
odologies exist. One is the specification of the preferred methodology
or methodologies for performing requirements analysis. In order to
ensure consistency in the quality of the requirements and uniformity
in the way that they are documented, the methodologies must be
institutionalized. That is, there must be a common way of per-
forming requirements analysis within each project—one that is well
understood and practiced by all the affected developers. For exam-
ple, a project’s use of data flow or object oriented analysis to define
requirements results from the establishment of one or the other as
the preferred methodology for performing requirements analysis.

The second interface has to do with baselining requirements
and controlling changes to them. This process, or methodology, is
known as a ‘‘configuration management process.’’ This is a manage-
ment methodology implemented to:

• Prevent uncontrolled changes to baselined items
• Improve the likelihood that the development effort will re-

Software Quality 7

sult in quality software, and that software maintenance will
not degrade it

The discipline of configuration management assists project manage-
ment in ensuring that the requirements will be managed and con-
trolled.

The interface between this element of the SQP and the software
quality evaluation element is concerned with the evaluation of the
requirements. They must be correct, complete, understandable, test-
able, and feasible (among other features). They must also correctly
capture the user’s needs. As pointed out in Reference 3, total compli-
ance with requirements does not guarantee quality software. If the
user’s needs have not been properly captured, errors exist in the re-
quirements. Compliance with requirements will then produce soft-
ware that does not satisfy the intended end use. Clearly, require-
ments must be evaluated for adequacy with respect to all aspects
while they evolve and develop.

1.2.2 Methodology Establishment and Implementation

The second element of the SQP pertains to the establishment, imple-
mentation, and enforcement of methodologies for the development,
operation, and maintenance activities for the software product.
These are the processes by which the software will be developed,
operated, and maintained.

There is a very strong link between software quality and the
processes used to develop it. If the processes in use by a software
development organization are not well defined or organized, the
quality of their software products will not be predictable or repeat-
able from project to project. The dependency of software quality on
processes has been characterized by the Software Engineering Insti-
tute (SEI) at Carnegie Mellon University in a Capability Maturity
ModelSM (CMM)* [4–6]. Five levels of maturity are described by the
CMM. The levels, their names, and the characteristics which de-
scribe when the organization has reached that level are identified
below:

* The Capability Maturity Model (CMM) is a service mark of the Software
Engineering Institute.

8 Chapter 1

• Level 1: Initial: Chaotic, ad hoc; organized practices do not
exist for a consistent project management discipline—nor
do any exist for performing a consistent software develop-
ment process.

• Level 2: Repeatable: Development process is intuitive,
rather than codified; procedures for project planning and
management, SCM, SQA, requirements management, and
subcontractor management exist and are implemented.
Success on development projects, however, is very much de-
pendent on key individuals, and not on process. In times of
crisis, established procedures are abandoned.

• Level 3: Defined: A process focus exists in the organization.
A Software Engineering Process Group (SEPG) exists and
is charged with that responsibility. Software development
and project management processes are codified and followed
for all projects. Procedures and tools for software develop-
ment exist and are implemented. When faced with a crisis,
the organization continues to use the defined process.

• Level 4: Managed: Minimum basic process measurements
have been established. A process data base and the re-
sources to manage it have also been established. Resources
to gather and maintain the data have been established. Pro-
cess measures are used to identify when processes have
gone awry and to implement corrective actions. Quantita-
tive measures for product quality have been defined and im-
plemented.

• Level 5: Optimizing: Process measures are being collected
and entered into the process data base. The process data
base is being used to fine tune and optimize the development
and maintenance processes. The process measures are uti-
lized to evaluate candidate new technologies for implemen-
tation in the process.

A methodology, called the software process assessment (SPA),
has been developed by the SEI to determine the capability level at
which software development organizations are functioning [7,8]. The
original SPA methodology was based on an older ‘‘process maturity
model’’ [4,17]. The process maturity model was not as robust as the
CMM, and did not have the detailed structure contained in it (see
Chapter 3 for a discussion of the structure). This prompted the devel-

Software Quality 9

opment of the CMM (which, in its preliminary form, was referred
to as Version 1.0), and an upgraded assessment methodology. The
released version of the CMM was identified as Version 1.1. When
Version 1.1 of the CMM was released, the SPA methodology was
upgraded, and renamed. It is now called a ‘‘CMM-Based Appraisal
for Internal Process Improvement (CBA-IPI).’’ It is still sometimes
loosely referred to as a SPA or an assessment.

As of October, 1997, 606 organizations have had assessments
performed. This total includes assessments performed under the
original SPA methodology, as well as CBA-IPIs. Of these organiza-
tions, 59.4% were found to be functioning at Level 1, 24.3% at Level
2, 13.9% at Level 3, 2.1% at Level 4, and 0.3% at Level 5 [9]. Based on
the definitions of the levels of the CMM, 88.6% of the organizations
surveyed do not have well-established, codified software develop-
ment processes.

These figures do not represent a random sampling of the soft-
ware industry. They are the recorded result of assessments willingly
undertaken by organizations who have decided to embark on a pro-
cess improvement program. There are many who believe that if a
true random sample were taken, the number of organizations at
Level 1 would be much higher (perhaps upward of 75% or greater)
and, correspondingly, the number at the higher levels would be
fewer. If we accept the premise that the quality of a software product
is dependent on the quality of the process used to develop it, then
the logical conclusion is that the consistent production of quality
software is a sometime thing for the vast majority of software devel-
opment organizations.

Data gleaned from various sources indicate that the Japanese
software industry is achieving defect rates two orders of magnitude
better than those of the ‘‘best in class’’ U.S. companies [10]. A reason
why the Japanese are achieving such low defect rates, based on re-
views of the Japanese software industry conducted in 1984 and 1989,
is because of their emphasis on understanding and improving the
software development process. The same reports also indicate the
authors’ beliefs that many of the Japanese companies are operating
at Levels 3, 4, and 5, whereas 16.3% of U.S. companies are operating
at Level 3 and above, based on the October 1997 figures.

There is a great deal of interest in the CMM within India, and a
number of commercial organizations have set off on efforts to achieve
Level 3. A significant number of Indian software organizations have

10 Chapter 1

had software process assessments performed. In fact, one of the very
few organizations operating at Level 5, although not specifically
identified in Reference 9, is a Motorola operation in India [18]. In-
dian software development organizations have frequently been se-
lected as subcontractors by U.S. companies because of their low cost
and reputation for high quality.

From the foregoing, it can be seen why establishment of meth-
odologies is such an important element of the Software Quality Pro-
gram.

Fortunately, many companies in the U.S. are beginning to rec-
ognize the importance of a establishing and implementing a defined
process. Contrast the data of Reference 9 with the data first reported
by the SEI in June, 1989 [11]. From that report, we see that 86%
were found to be functioning at Level 1, and 13% at Level 2. At that
time, fully 99% of the organizations surveyed did not have well-
established, codified software development processes. This recent
data shows a small but significant improvement in just a few years.
Has this had a significant impact on quality, productivity, and cost?
Very definitely! Consider the following examples: the Software Engi-
neering Division of the Hughes Aircraft Ground Systems Group in-
vested approximately $500,000 to move from Level 2 to Level 3 on
the CMM. As a result of that investment, they have realized savings
on the order of $2 million per year on their software development
costs [12]. Raytheon’s Equipment Division achieved a 7.7 return on
investment in improving from Level 1 to Level 3, and realized a two-
fold gain in productivity. With regard to the effect on quality, Ray-
theon eliminated approximately $15.8 million in rework costs from
the time they embarked on their process improvement initiative in
1988 through the end of 1992 [13].

Several reports recently released show that other companies
are experiencing similar benefits from software process improve-
ment. A recent report from the SEI documents anecdotal data from
13 commercial organizations, defense contractors, and DoD installa-
tions that indicate benefits in a number of categories [19]. These
include categories such as productivity gains, reduction in time to
market, and reduced defects in the delivered software. Results from
studies performed by Logos International and others indicate gains
in cost and schedule performance [20].

In Chapters 2 and 3, we will continue the discussion of the
CMM, software process assessments, and process improvement.

Software Quality 11

What does the accomplishment of this element of the SQP en-
tail? Establishing methodologies refers to the process of defining the
methodologies to apply to the development, operation, and mainte-
nance efforts. Their implementation is facilitated by codifying them
in the form of standard practices and procedures, and training per-
sonnel in their use. Implementation of the methodologies may be
further facilitated by the acquisition of tools compatible with the
methodologies and the standard practices and procedures. Enforce-
ment is accomplished through the commitment of corporate manage-
ment. Management must consistently expect and demand the appli-
cation of the selected methodologies from project to project, and
resist the temptation to abandon the established practices under
conditions of schedule pressure. Some tools, such as automated pro-
cess environments, can facilitate the enforcement of the methodolo-
gies and the associated standard practices and procedures.

Consistent use of the selected methodologies from project to
project does not mean that they are never improved, updated, or
modified. The acquisition, development, or use of different methodol-
ogies is not precluded. In fact, if a process is never updated or im-
proved, it may be counterproductive. Nonetheless, before these
changes are made, the evaluation of the efficacy of these changes
must be performed. Their introduction must be carefully scheduled.

In this discussion of methodologies, when we refer to ‘‘develop-
ment effort,’’ it means the requirements definition, design, and test
activities of the project and the documentation produced during
these activities. Development procedures refer to those needed to
define how to establish requirements and to design, code, test, and
document the software: utilizing structured analysis, implementing
top-down design, using software development folders [14], imple-
menting coding standards, and configuration management.

‘‘Operation’’ refers to production or operational usage of the
software. Quality can be affected by improper operation of the soft-
ware system or by inadequacies in instructions contained in the us-
er’s manual. Reference 3 illustrates this point quite well. It describes
a situation where a large number of abnormal terminations occurred
because the software was not correctly operated. In analyzing the
cause of the errors, 78% of the errors could be classified as human
error on the part of the operator or the user. These occurred because
of an excessive number of manual steps in setting up the run or in
processing it, making these operations cumbersome. Manual steps

12 Chapter 1

are, by nature, error prone. In this case, the inferior operability of
the software adversely impacted the perception of its quality.

Reference 1 points out that if the software doesn’t operate the
way that the user of the system expects, it will not be perceived as
quality software. As the example in Reference 3 showed, this can
occur even if the software has been properly designed and coded,
i.e., in compliance with the requirements. Operation of the software,
therefore, is also a process that needs to be evaluated and improved,
as necessary.

The maintenance activities pertain to those activities that oc-
cur after development has been completed and a production or opera-
tional baseline (or freeze) has been established for the software
(code, design, documentation). At this point, acceptance or qualifi-
cation testing has been completed and the software is ready for oper-
ational or production usage. If adequate procedures have not been
established to handle software maintenance, the quality initially
built into the software product may suffer degradation. For example,
inadequate change control procedures or inadequate definition of
procedures to ‘‘fix’’ the code in the event of a failure, would result in
such degradation.

One way in which the accomplishment of this element of the
SQP can be facilitated is by establishing a Software Engineering
Process Group* (SEPG) [4]. It is the focal point for the methodology
element of the SQP. Its main function is to serve as the initiator,
sustainer, and evaluator of process change. Based on data collected
through the means described by the software quality evaluation ele-
ment of the SQP, the SEPG determines if the established processes
for software development and maintenance are satisfying the qual-
ity requirements, especially in the form of product quality. If they
are not, the SEPG researches other viable methodologies to deter-
mine a suitable replacement. It also evaluates new methodologies
as they become available to determine their applicability to the com-
pany’s products, and their capability to meet quality criteria. If the
introduction of a new methodology can effect a material improve-

* In MIS organizations, it may be known as the MIS Standards Committee.
It may be known by other names, as well, in other organizations, but its
functions are essentially the same, no matter what it is called. For ease
of reference, it will be referred to as the SEPG.

Software Quality 13

ment in product quality, the SEPG may recommend its introduction.
In making this recommendation, it examines the impact of introduc-
ing the new methodology to determine if that will create excessive
disruption, and significantly degrade the accomplishment of on-
going projects.

The methodologies, which are established by the SEPG, are es-
tablished for use throughout the entire organization, but may be dif-
ferent for the various types of software produced by the organization.
In other words, ‘‘one size fits all’’ doesn’t necessarily apply when it
comes to software process. The SEPG may identify the need for ap-
plication domain-specific methodologies. For example, a company
which produces software that controls nuclear reactors may utilize
different methodologies for developing the software used in reactors
from those used to develop their business-related information sys-
tems. Furthermore, it may be necessary, at the outset of a new proj-
ect, to modify these methodologies to suit the unique requirements
of the software to be produced on this new project. This is referred
to as tailoring. Depending on the criticality and complexity of the
software, practices may be added to or deleted from the defined
‘‘standard’’ process. Such decisions, however, require the review and
approval of a centralized authority.

Considering the present state of the art, selecting appropriate
methodologies to apply is, at best, a crude art, particularly for orga-
nizations at the lower levels of the CMM. It is based on experience,
intuition, literature search, and common knowledge. No formalized
techniques exist for specifying the methodologies to apply.

1.2.3 Evaluation of Process and Product Quality

The third element pertains to those activities necessary to evaluate
the software development process and the resultant products. This
element is referred to as the software quality evaluation (SQE) pro-
gram. SQE is a set of assessment and measurement activities per-
formed throughout software development and maintenance to evalu-
ate the quality of software products and to evaluate associated
documentation, processes, and activities that impact the quality of
the products. ‘‘Assessment’’ pertains to qualitative evaluation while
‘‘measurement’’ pertains to quantitative evaluation.

Measurement encompasses all quantitative evaluations, spe-
cifically, tests, demonstrations, metrics, and inspections. For these

14 Chapter 1

kinds of activities, direct measures can be recorded and compared
against pre-established values to determine if the software meets
the requirements. Accordingly, unit level testing, software integra-
tion, and software performance testing can be considered as mea-
surement activities. Similarly, the output of a compare program or
a path analyzer program can also be considered measurement.

Measurement also includes the use of metrics and measures
that can be used to directly determine the attainment of numerical
software quality goals. Measures of reliability, such as the number
of faults per 1000 lines of source code (faults/KSLOC), are examples
of such measures. Chapters 4, 5, and 6 discuss the use of such mea-
sures.

On the other hand, any evaluative undertaking that requires
reasoning or subjective judgment to reach a conclusion as to whether
the software meets requirements is considered to be an assessment.
It includes analyses, audits, surveys, and both document and project
reviews.

The ‘‘set of evaluation activities’’ refers to the actions, such as
reviews, evaluation, test, analysis, inspections, and so on, which are
performed to determine that (1) technical requirements have been
established, (2) products and processes conform to these established
technical requirements, and ultimately, (3) to determine software
quality. The focus of these activities vary as a function of the stage
of the development effort. For instance, peer reviews conducted dur-
ing the software requirements analysis activities will focus on the
adequacy of the evolving software processing requirements and their
compatibility with the requirements for the design of the data-
base(s). On the other hand, peer reviews conducted during detailed
design will focus on how well the design of each unit of software is
implementing the requirements allocated to it.

These evaluations may be performed by a number of different
organizations or functions, some or all of which may be within the
project organization. Furthermore, any one evaluation may be per-
formed by different organizations or functions. As an example, the
evaluators of a software requirements specification for a flight con-
trol system may include a flight controls engineer (to ensure that
all the technical requirements have been implemented), a software
engineer (to ensure that the requirements, as specified, can be imple-
mented in software), a test engineer (to ensure testability), and SQA
(to ensure that the overall requirements for the content of the docu-

Software Quality 15

ment, as well as it’s quality, have been addressed). The ‘‘set of evalu-
ation activities’’ to be performed are generally documented in project
plans, software development plans, project-specific software quality
procedures, and/or company quality plans and related software
quality procedures.

In the case of the products, determination of the software
quality can be performed by comparing the products against pre-
established criteria. However, evaluation of product quality is diffi-
cult, especially since the definition of software quality is hard to ex-
press quantitatively within the current state-of-the-art. A large vol-
ume of research has been directed toward the establishment of
quantitative definitions of quality, for example, software reliability.
We see much of this effort expressed in terms of software metrics.
Numerous definitions for software metrics have been proposed and
applied to specific cases. No one set of metrics will work for all cases.
There is no silver bullet that will satisfy everyone’s needs. (In later
chapters of this book, we will discuss some of these metrics and mea-
sures, and illustrate how they can be applied).

On the other hand, the technology is available to establish and
enforce various forms of meaningful quality criteria. The approach
is relatively straight forward: Establish criteria based upon measur-
able entities; entities that lend themselves to validation during soft-
ware development. As long as these criteria can be related to the
attribute of quality desired (‘‘quality is in the eye of the beholder’’),
a project can use them to gauge quality. For example, the cyclomatic
complexity metric is a measurable entity. Experience indicates that
a limit of seven for cyclomatic complexity is wise to impose for units
and aggregates of avionics software. At levels above seven, the soft-
ware is more error-prone and more difficult to maintain. Accord-
ingly, avionics software development projects would likely use this
limit of the metric as one measure of the software product’s quality.

The evaluation program also includes assessment and mea-
surement of the software development and maintenance processes
and the activities/procedures comprising them. It may be that the
process is being properly implemented, but the products are not at-
taining the desired level of quality. These evaluations constitute a
check of the existing process against the initial analysis performed
prior to the start of the development, that is, during the methodology
selection process discussed above. A principle of quality manage-
ment is that product quality can be improved through the continuous

16 Chapter 1

improvement of the processes used to produce it. Continuous im-
provement is achieved by focusing on the processes, and using prod-
uct evaluations, as necessary, as indicators of process adequacy.
This evaluation may be implemented by examining interim software
products, such as initial specifications, materials presented at
walkthroughs or inspections, or the artifacts (products) which result
from the process itself, such as software development folders. Such
measurements are aimed at determining the quality of the content
of these products as the determinant of the process quality.

Generally, the basis for determining which process to imple-
ment has been to look at a candidate process or set of processes and
evaluate the proposed process on the basis of its track record. The
assumption is that if the process has been shown to produce ‘‘high
quality software’’ in the past, then proper implementation of the pro-
cess will result in a high quality product. This argument is some-
what misleading. There has been anecdotal evidence [20] of the rela-
tionship, but no conclusive demonstration of a definite link between
the process selected for the software development and the resultant
quality of the software product itself. Establishment of such links
has been more heuristic or intuitive rather than analytical. For ex-
ample, the use of the Ada programming language promotes informa-
tion hiding which, in turn, should make the software more adapt-
able. But, the actual cause and effect link has not been clearly
demonstrated through hypothesis testing.

Typical of the difficulty in such research is the work of the De-
partment of Defense (specifically the Air Force) in defining a soft-
ware quality framework leading to software quality metrics (see for
example, Reference 16). Upon close examination, it may be seen that
this framework actually measures the adherence to good program-
ming practices rather than the actual quality of the software. Other
work attempting to link processes to product quality can be found
in Reference 15.

What is crucial to any software development project is the
definition and implementation of the activities necessary to assess
and measure the quality of the software products produced by that
project, in accordance with the requirements established for the proj-
ect. Equally crucial is the definition and implementation of the activ-
ities necessary to evaluate the adequacy of the processes used by
that project to produce the software products.

Software Quality 17

1.3 SUMMARY

In implementing the Software Quality Program, certain concepts
must be kept in mind.

First, one must understand what software quality is and the
technical aspects of specifying, designing, and testing for it. Software
quality is achieved with proper software design and implementing
appropriate processes. Quality cannot be achieved by ‘‘assuring’’ and
testing the product. The relationship of product quality to process
is indispensable.

Second, the ideas associated with software quality lead to the
software quality program. General principles of such a program have
been discussed. Three elements of the Software Quality Program
were described in some detail; these elements interact not only with
each other but also with all other project activities. This interaction
is extremely complex, occurring at many levels within the software
project and throughout the project’s life. What one derives from the
fact of this interaction is that no process is performed in a vacuum,
nor is it an island unto itself. If we decompose the overall process
into constituent sub-processes and activities, we will see that there
are many suppliers to and customers of the development and main-
tenance activities performed during a software product’s life cycle.

In this first chapter, we have set the stage for the remainder
of the book. The SQP describes the framework for building quality
software and determining the degree to which that ‘‘quality’’ has
been obtained. The interdependence of this framework with process
is very clear.

We will now turn our attention to describing what software pro-
cesses consist of, and the ways by which these processes can be eval-
uated and improved.

REFERENCES

1. Baker, Emanuel R. and Fisher, Matthew J. ‘‘A Software Quality
Framework,’’ in Concepts-The Journal of Defense Systems Acquisition
Management, Moore, Robert Wayne, ed.; Vol. 5, No. 4, Autumn, 1982
(Fort Belvoir VA: Defense Systems Management College, 1982).

2. Bryan, William E., and Siegel, Stanley G. ‘‘Software Configuration

18 Chapter 1

Management—A Practical Look,’’ in The Handbook of Software Qual-
ity Assurance, Schulmeyer, G. Gordon and McManus, James I., eds.,
New York: Van Nostrand Reinhold Company, Inc., 2nd ed., 1992.

3. McCabe, Thomas J., and Schulmeyer, G. Gordon. ‘‘The Pareto Princi-
ple Applied to Software Quality Assurance,’’ in The Handbook of Soft-
ware Quality Assurance, Schulmeyer, G. Gordon and McManus,
James I., eds., New York: Van Nostrand Reinhold Company, Inc., 2nd
ed., 1992.

4. Humphrey, Watts S. ‘‘Managing the Software Process,’’ New York;
Addison-Wesley, 1989.

5. Paulk, Mark C., Curtis, Bill, Chrissis, Mary Beth, and Weber, Charles
V. ‘‘Capability Maturity Model for Software, Version 1.1,’’ Technical
Report CMU/SEI-93-TR-24. Software Engineering Institute, Carnegie
Mellon University, February 1993.

6. Paulk, Mark C., Weber, Charles V., Garcia, Suzanne M., Chrissis,
Mary Beth, and Bush, Marilyn. ‘‘Key Practices of the Capability Matu-
rity Model, Version 1.1,’’ Technical Report CMU/SEI-93-TR-25. Soft-
ware Engineering Institute, Carnegie Mellon University, February
1993.

7. Humphrey, W. S.. and W. L. Sweet. ‘‘A Method for Assessing the Soft-
ware Engineering Capability of Contractors,’’ Technical Report CMU/
SEI-87-TR-23. Software Engineering Institute, Carnegie Mellon Uni-
versity, September 1987.

8. Humphrey, Watts S. and David H. Kitson. ‘‘Preliminary Report on
Conducting SEI-Assisted Assessments of Software Engineering Capa-
bility,’’ Technical Report CMU-SEI-87-TR-16. Software Engineering
Institute, Carnegie Mellon University, July 1987.

9. ‘‘Process Maturity Profile of the Software Community 1997 Update,’’
Software Engineering Measurement and Analysis Team, Software En-
gineering Institute, Carnegie Mellon University, October 1997.

10. Yacobellis, Robert E. ‘‘A White Paper on U.S. vs. Japan Software Engi-
neering,’’ January 1990.

11. Tutorial. ‘‘Software Process Assessment,’’ Software Engineering Insti-
tute, Carnegie Mellon University, September 1990.

12. Humphrey, Watts S., Snyder, Terry R., and Willis, Ron R. ‘‘Software
Process Improvement at Hughes Aircraft,’’ IEEE Software, Vol. 8, No.
4, July, 1991.

13. Dion, Raymond. ‘‘Process Improvement and the Corporate Balance
Sheet,’’ IEEE Software, Vol. 10, No. 4, July, 1993.

14. Ingrassia, Frank S., The Unit Development Folder (UDF); ‘‘An Effec-
tive Management Tool for Software Development,’’ in Tutorial; Soft-
ware Management, Reifer, Donald J. ed., 3rd ed., Washington, DC;
IEEE Computer Society Press, 1986.

Software Quality 19

15. Arthur, James D. and Richard E. Nance. ‘‘Developing an Automated
Procedure for Evaluating Software Development Methodologies and
Associated Products,’’ Technical Report SRC-87-007. System Research
Center, Virginia Polytechnic Institute, Blacksburg, VA, 16 April 1987.

16. Bowen, Thomas P., Wigle, Gary B., and Tsai, Jay T. ‘‘Specification of
Software Quality Attributes,’’ Technical Report RADC-TR-85-37,
Rome Air Development Center, Griffis Air Force Base, Rome, NY, Feb-
ruary 1985.

17. Humphrey, Watts S. ‘‘A Software Process Maturity Model,’’ IEEE Soft-
ware, Vol. 10, No. 4, July, 1987.

18. Sims, D., ‘‘Motorola India Self-Assesses at Level 5,’’ IEEE Software,
March, 1994, Page 92.

19. Herbsleb, James, et al., ‘‘Benefits of CMM-Based SPI: Initial Results,’’
SEI 94-TR-13, 1994.

20. Zubrow, David, ‘‘Software Process Improvement: Business Impacts
and Values,’’ Software Engineering Institute, Presentation to the Los
Angeles Software Process Improvement Network (SPIN), 29 May
1996.

2
Basics of Quality Management
and Continuous Process
Improvement

2.1 INTRODUCTION TO QUALITY MANAGEMENT CONCEPTS
AND PRINCIPLES

2.1.1 Definitions of Quality

To begin the discussion of this section, let us review a basic concept
from Chapter 1: The Definition of Software Quality.

There was an episode in the long-running hit television series,
M∗A∗S∗H∗, in which Radar, the telepathic company clerk (an en-
listed man), had a short-lived romance with a nurse (an officer). Ra-
dar, whose insecurities were best characterized by the teddy bear
that he slept with every night, was feeling very insecure in this rela-
tionship. He really felt out of his league. She was an officer, and he
wasn’t. She was very sophisticated, and he wasn’t. He wasn’t sure
that he could maintain a conversation with her, being that she was
a college graduate, and his formal education fell far short of that.
He knew very little of art or fine music, things that she was far more
familiar with than was Radar, and he was worried that she would
rapidly find him boring. Radar turns to Captain Hawkeye Pierce,
M.D., for advice. Hawkeye, womanizer, prankster, and schemer ex-
traordinaire, advises Radar to bluff his way through conversations
with her, and make a direct move to a little romance. Hawkeye’s
rationale was that once she was hooked romantically, Radar’s lack
of sophistication and education would be unimportant. But Radar

21

22 Chapter 2

is uncertain. What if the conversation turns to classical music?
Hawkeye advises him only to say, ‘‘Ahhhh! Bach!,’’ in a very knowing
tone.

‘‘Ahhhh! Bach!’’ is, perhaps, the best way to describe quality.
It’s very difficult to define, but everyone will say that they know it
when they see it, or hear it, or feel it. And often its very subjective.
Ask people about quality who are satisfied with their cars, and they
are likely to tell you about the looks of the car, or its ruggedness, or
how fast it can go. They won’t all necessarily use the same yardstick
as the indicator of quality. Quality means different things to differ-
ent people. Quality is in the eye of the beholder.

When we are talking about software, who is the beholder? It
is, of course, the person using the software—the person who has to
interact with the software every time it is executed. That is the per-
son who must be satisfied that the software does what he or she
wanted when it was purchased. In the case of software developed
solely for internal use within a company or other entity, the determi-
nant of quality is whether or not the software performs as intended
when the user asked the development organization to produce it. In
many cases these needs evolve with time and accumulated experi-
ence, creating a continuous need for upgrading and tailoring.

Typically, the user’s perception of quality is, ‘‘Does the software
do what I wanted it to do?’’ If it doesn’t, the perception is that the
software is not quality software. It is this concept that underlies
the definition of software quality that appears in the first chapter:
the degree to which a software product possesses a specified set of
attributes necessary to fulfill a stated purpose. The ‘‘stated purpose’’
is, of course, the intended function of the software. Software product
quality means, in effect, achieving its intended end use, as defined by
the user or customer. These requirements include the software func-
tional and performance requirements, and also include requirements
for maintainability, portability, interoperability, and so on. The sig-
nificance of this concept is that product requirements are, in reality,
the quality requirements. And they must accurately capture and re-
flect the way that the user/customer wants to use the software.

The concepts underlying this definition of quality for software
are very consistent with other definitions of software quality [1]. Vir-
tually all of them address fitness of use for the customer or user in
one way, shape, or form.

The ability (or inability) to accurately capture what the user

Basics of Quality Management 23

or customer wants is one of the major process problems in software
affecting quality. Various studies indicate that requirements-related
errors account for anywhere from 25% to 40% of all defects found in
software. Data collected by Capers Jones shows that requirements
errors account for 30% of defects in MIS applications, 15% in systems
software, 25% in military software, and 25% overall [2]. A study by
Ray Rubey showed that incomplete or erroneous specification of re-
quirements accounted for 28% of the defects observed on one project,
and another 12% were due to intentional deviation from the specifi-
cation [3]. Clearly, the data indicates that the real measure of soft-
ware quality, i.e., accurately specifying what the user or customer
wants, is not being met very well.

Consider the following complicating factors:

• As difficult as it is to capture the user’s view of desired func-
tionality in a single user system, it is significantly more dif-
ficult for a system with multiple users. All inputs (view-
points) must be considered. Often, they are not.

• When software is being developed for commercial sale, the
user community is a vast unknown population of people ‘‘out
there.’’ A go-between (and arbiter of what the users really
want) is the company’s sales and marketing organization.
Unfortunately, they often have a fuzzy image of some grand
and glorious product that will be ready in two months and
will be incredibly cheaper than products offered by the com-
petition. Another go-between is the product support organi-
zation—the people who staff the help lines. They spend
their days listening to complaints. Often, the views of sales
and marketing differ markedly from that of the product sup-
port organization, and the level of detail at which these
views are presented also differ markedly. Identifying what
the user community really wants, and to deliver precisely
that on-schedule and within the budget allotted for the de-
velopment effort, is to make order out of chaos.

• When software is developed under contract, the contract is
an obstacle to defining the real quality measure—unless the
requirements have been completely (and accurately) defined
by the customer before the contract is let, or there is a mech-
anism for coming to agreement on the requirements with a
minimum of contractual red tape.

24 Chapter 2

• When software is developed under contract, sometimes the
customer is not the user. This typically happens in defense
contracts, where the organization or command respon-
sible for acquiring the software is not the ultimate user of
the software. Sometimes, the true needs get garbled in the
translation from user to acquirer. Determining what the
user really wants becomes a major headache.

Quality is in the eye of the beholder. Making sure the eventual
‘‘beholder’’ (the user) is able to obtain the quality that he or she ex-
pects is the challenge of software development. The real problem is
being able to see the software product as the ultimate beholder or
beholders will see it. And, often, being able to see it when they, the
users, aren’t able to articulate very well what they want to see.

2.1.2 Overview of Quality Management

Quality management can be traced back to Walter Shewhart who,
while working at Bell Laboratories in the 20s, developed the con-
cepts of process control and process improvement. Shewhart is cred-
ited as being the inventor of the control chart and the Plan-Do-
Check-Act (PDCA) cycle. Edwards Deming and Joseph Juran taught
the Japanese, in the 50s, how to implement these ideas of process
control and process improvements. Deming’s experience as a consul-
tant in statistical methods is summarized in 14 management princi-
ples which are the basis of what is now called Total Quality Manage-
ment. Juran developed many of the management tools and concepts
of quality management which were published in the famous Juran
Quality Control Handbook (see References 5, 12, and 14). Central
to the implementation of quality management is the concept of a
process with its ‘‘customers’’ and ‘‘suppliers.’’ A process may be
thought of as a set of activities organized to achieve some objective
or goal. In manufacturing, it is the series of activities necessary to
turn raw materials into objects which can be assembled for delivery
to a customer. In software, it is the set of activities necessary to turn
a concept into an executing application. The set of activities may be
very rudimentary, or may be very complex. The maturity of the pro-
cess and the kinds of activities included in the process can have an
enormous bearing on the resultant quality of the product.

Establishing such structures of activities naturally creates an

Basics of Quality Management 25

opportunity to establish feedback loops, both internal and external,
around each process in an organization. These feedback loops help
identify opportunities for improvements and provide information for
controlling processes. Both the control and improvement of processes
rely on the use of statistical methodology. The actual implementa-
tion of Statistical Process Control and successes in process improve-
ment efforts demand a broad system view which requires an under-
standing of issues in human resources management, accounting
procedures, and information systems. Speeding up the implementa-
tion of quality management is becoming a burning topic for many
companies who are looking at quality breakthroughs as the way to
improve their competitive position. Twenty years ago the ideas and
tools of quality management were unknown or misunderstood in the
West by both academics and industrialists. Nowadays, Deming and
Juran are mentioned in most management textbooks, and Quality
has become recognized as a major strategic dimension by modern
enterprises who are forced to keep up with rapid changes and world
competition.

2.1.3 The Quality Movement

Varying amounts of effort has been expended by organizations in
process improvement, ranging from essentially nothing to full-
blown, all out efforts. Information was gathered by the GAO [4] to
provide the U.S. House of Representatives with a summary of the
effectiveness of quality management in making American companies
more competitive in domestic and world markets. The report is an
overview of results of company adoption of quality management
based on analyzing 59 small (500 or less employees) and large (500
or more employees) companies.

Some companies refused to divulge financial data. All compa-
nies reviewed had adopted quality management in the mid-1980s.
The benefits of implementing quality management realized after
1–5 year ‘‘gestation’’ period are shown below in Table 2.1.

2.1.4 Organizing For Quality Management

In organizing for quality management, it is essential that the struc-
ture be organized to focus on the fundamental purpose of quality
management: achieving continuous process improvement. Quality,

26 Chapter 2

Table 2.1 Performance Indicators

Measure Average change

A. Employee relations
1. Employee satisfaction 1.4% increase
2. Attendance 0.1% increase
3. Employee turnover 0.6% decrease
4. Safety and health rates 1.8% increase
5. Suggestions 16.6% increase

B. Operating procedures
1. Reliability 11.3% increase
2. On-time delivery 4.7% increase
3. Order-processing time 12.0% decrease
4. Errors or defects 10.3% decrease
5. Product lead time 5.8% decrease
6. Inventory turnover 7.2% increase
7. Cost of poor quality 9.0% decrease

C. Customer satisfaction
1. Overall customer satisfaction 2.5% increase
2. Customer complaints 11.6% decrease

D. Financial performance
1. Market share 13.7% increase
2. Sales per employee 8.6% increase
3. Return on asset 1.3% increase

as practiced by most software organizations, is focused on problem
correction. Problem correction, while essential, only serves to re-
move the defects that have been embedded in the product as a conse-
quence of the production and/or development process. Problem pre-
vention, on the other hand, serves to improve the quality of the
product and improve the competitive position of the organization.
When properly organized for quality management, the focus of orga-
nizations is on problem prevention.

Problem prevention has two aspects: (1) Preventing recurrence
of existing problems, and (2) preventing introduction of new prob-
lems. In other words, problem prevention results in quality improve-
ment. Quality improvement can be considered to be of two types:
reactive (driven by problems) and proactive (driven by the desire to
improve quality). Reactive quality improvement is the process of un-
derstanding a specific quality defect, fixing the product, and identi-

Basics of Quality Management 27

fying and eliminating the root cause to prevent recurrence. Proactive
quality improvement is the continual cycle of identifying opportuni-
ties and implementing changes throughout the product realization
process which result in fundamental improvements in the level of
product quality. It is a continual process.

Quality improvement necessitates some organizational struc-
tural changes. The first is the implementation of a Quality Council.
Other names used for such forums are Continuous Improvement
Committee, Quality Board, and Quality Management Forum. Some-
times, the role of the Quality Council is split between management
and the lower level performing organizations. In these cases, man-
agement may assume the role of a steering committee, whereas the
performer level may be responsible for overseeing the details of the
process improvement activities. Specifically, in software develop-
ment and maintenance organizations, it is common to find Software
Engineering Process Groups (SEPGs) or Software Engineering Com-
mittees which operate in this capacity of Quality Councils. The man-
agement steering committee may set process improvement goals,
provide budgets and other resources, and be the final approval au-
thority for the proposed process improvement projects, and the
SEPG or Software Engineering Committee will act as the adminis-
trative arm of process improvement.

Overall, the Quality Council is responsible for:

• Defining and helping implement the improvement process
• Initiating improvements (some)
• Supporting the improvement process
• Keeping the process going and tracking progress
• Disseminating information
• Gathering data

Specifically, the Quality Council’s charter is to:

• Establish a system for choosing projects, appointing project
teams, and soliciting and screening nominations for proj-
ects.

• Set responsibilities for carrying out projects by defining
team charters and appointing facilitators, team members,
and team leaders.

• Identify training needs, plan the training, and identify the
trainees.

28 Chapter 2

• Establish support for project teams.
• Provide for coordination of process improvement efforts.
• Establish measures for progress on improvement.
• Design a plan for publicity and recognition of achievements.

To facilitate the accomplishment of these responsibilities, an
additional organizational entity must exist: the Quality Improve-
ment Teams (QIT). These are ad hoc teams that are commissioned
by and are responsible to the Quality Council to implement specific
process improvement projects. The QITs are responsible for:

• Initiating improvements
• Understanding the problems
• Determining causes and solutions
• Estimating the benefits for specific process improvements

and securing support
• Addressing people issues
• Implementing the change
• Establishing methods to maintain the level of improvement
• Tracking progress

Organizational structures and entities in and of themselves are
not sufficient. Other factors must exist in order to accomplish suc-
cessful process improvement. Chief among these are the commit-
ment and involvement of management. Without that, virtually noth-
ing is possible. Lip service on the part of management will be readily
recognized; consequently, there will be no motivation for the organi-
zation to implement any changes in the way they do business. ‘‘Talk-
ing the talk’’ without ‘‘walking the walk’’ will be recognized as empty
words. Management must exhibit the following behavioral charac-
teristics to ensure that the organization understands that they are
sincerely committed to process improvement:

• Commitment must be genuine and self-evident.
• Guidance, support, and training through close involvement

must be provided.
• Keep team focused on business objectives.
• Establish a relationship of trust and respect between all

members.
• Acknowledge all recommendations.

Basics of Quality Management 29

2.2 THE IMPROVEMENT PROCESS

The improvement process can be characterized in a number of ways.
Joseph M. Juran [5] describes process improvement in what he re-
fers to as the ‘‘Quality Journey.’’ The basic attributes of organiza-
tions on the Quality Journey can be described as follows.

1. They have a plan to keep improving all operations continu-
ously. No company can afford to sit on their laurels and
assume that they have to perform process improvement
one time only. It’s important to stay ahead of the competi-
tion.

2. A system for measuring these improvements accurately.
It’s important to be able to assess the return on investment.

3. A strategic plan based on benchmarks that compare the
organization’s performance with the world’s best. To stay
ahead of the competition, a company must have informa-
tion on how well they are doing relative to their competi-
tion.

4. A close partnership with suppliers and customers, that
feeds improvements back into operation. If a company im-
proves the quality of their part of a product, but a supplier
of an included component doesn’t do the same, the quality
of the total product will be degraded.

5. A deep understanding of the customers so that their wants
can be translated into products and services. A good sup-
plier is attuned to their marketplace and aware of the
needs of it. Nobody will buy a product or service just for
the sake of buying it. It at least has to successfully fill some
identified need.

6. A long-lasting relationship with customers, going beyond
the delivery of the product and service. A hotel, for exam-
ple, may provide excellent service. But if the guest feels like
he or she is just a room number, the guest may go elsewhere
in the future.

7. A focus on preventing mistakes rather than merely correct-
ing them. A supplier who makes constant mistakes, and
cheerfully rectifies them quickly, will eventually lose out to
the supplier who doesn’t make the mistakes. The customer

30 Chapter 2

resents having to take productive time out of the day to call
the supplier because of their mistakes.

8. A commitment to improving quality that runs from top to
bottom in the organization.

The improvement process itself transitions through several
steps. They are as follows:

• Problem recognition
• Project selection
• Diagnosis
• Preparing the people
• Implementing the solution
• Maintaining the improvement

In this section, we will discuss these steps as they apply to pro-
cess improvement in general. In a later section, we will discuss these
steps in more detail as they apply to software process improvement,
specifically.

2.2.1 Problem Recognition

Clearly, the course of process improvement must begin with the rec-
ognition of an existing problem or a potential problem. While process
improvement in and of itself is highly desirable, organizations will
not begin process improvement without some external motivator.
The more enlightened organizations guard their market position,
and the potential loss of that is generally sufficient motivation. For
the less sophisticated organizations, process improvement doesn’t
begin until a problem of near-crisis proportions occurs.

There are some typical signs that are indicators of existing or
potential problems. One is the recognition that production costs are
higher than those of competitors for the same products. Another is
an indication that competitors are gaining a larger share of the mar-
ket. This can sometimes result from higher production costs, necessi-
tating an increase in the price paid by customers. High warranty
costs are another indication. When delivered products have to be
returned to the manufacturer for rework during the warranty period
at a relatively frequent rate, or the warranty period has to be short-
ened to reduce overhead, it’s a sure indication that process improve-
ment is in order. In the case of software, it could be unexpected field

Basics of Quality Management 31

modifications or frequent updates to the delivered software to re-
move ‘‘bugs.’’

The foregoing would suggest that tracking the cost of quality
is in order. Rough numbers can often be more than adequate. Simply
put, the cost of quality is the comparison of the costs of preventing
problems from occurring against the cost of defect removal. Clearly,
when the cost of defect removal exceeds the cost of defect prevention
by a good margin, the cost of quality is too high. Too much effort is
being put into correcting errors and not enough into preventing
them. This is exacerbated by the fact that the cost of correction in-
creases exponentially the later in the life cycle that the problem is
detected.

When we talk of defect prevention, we are talking of activities
such as the cost of establishing a defined software development pro-
cess along with the attendant cost of evaluating the quality of the
products during development and when they are ready for delivery.
Included in that would be the cost of testing, as an example. The
cost of defect removal includes activities such as rework, updating
documentation, and retest.

The objective of tracking the cost of quality is to reduce the
necessity for and the cost of rework. Obviously, a related objective is
the reduction of the costs for quality evaluation. When good software
development practices are followed during requirements analysis
and design, for example, the amount of effort expended in testing is
reduced.

For a more detailed discussion of cost of quality models as ap-
plied to software, see Reference 6.

In addition to tracking the cost of quality, other types of infor-
mation can provide valuable insight into existing and potential prob-
lems. These would include:

• Field reports
• Inspection and audit results
• Data on manufacturing yields
• Information on new technology
• Data on competitors’ products
• Customer satisfaction reports

Field reports provide information on problems users are experienc-
ing with the product, while inspection and audit reports provide in-
formation that can indicate process problems. Data on manufactur-

32 Chapter 2

ing yields can provide insight into potential rework problems during
the manufacturing process. In the case of software, this would apply
to the process of replicating the production-status software. Informa-
tion on new technology could indicate areas where technology solu-
tions can facilitate the process improvement effort. Data on competi-
tors’ products would indicate areas where the competition might be
achieving an edge over the organization. Finally, customer satisfac-
tion reports provide information on customer happiness with the
product, as well as potential new features that the customers might
like to see in the product.

The data from these sources should be analyzed and existing
and potential problem areas identified. Identified problem areas
should be documented. As indicated earlier, the costs of poor quality
should be estimated.

For software, another source exists for the identification of ex-
isting and potential problems. This is the use of the CBA-IPI, an
overview of which was presented in Chapter 1. This will be discussed
in greater detail later in Chapter 3, together with a description of
how this assessment process can be utilized to initiate process im-
provement projects, utilizing many of the principles discussed in this
chapter.

2.2.2 Selection of an Improvement Project

In this section, we present some general principles with respect to
selection of improvement projects. In the next chapter, we present
this concept in more detail.

The selection of an improvement project begins with an infor-
mal analysis or a structured assessment, which determines the cur-
rent status of the state of practice within the organization. The re-
sults of the analysis, or assessment, are a set of findings, which
characterize the strengths and weaknesses of the processes cur-
rently operating in the organization. The weaknesses suggest the
need for improvement. As a consequence, there is usually a need to
nominate improvement projects. The action planning which results
from the assessment establishes priorities for process improvement
and for the selection of improvement projects. Those which are initi-
ated first should be those which are likely to have a high return on
investment (ROI). Various analytical methods can be used in con-
junction with the planning process. These methods can include, for

Basics of Quality Management 33

example, Pareto analyses, Process Mappings, Impact Analysis, etc.
Pareto analyses may be based on potential reduction in Cost of Qual-
ity (COQ) or simple ROI. Other factors which enter into the picture
with regard to prioritization may include ease of implementation or
urgency to implement a change (e.g., sudden drop in quality, in-
creased cost of production or customer mandated requests.).

Having selected and prioritized a set of improvement projects,
it is then necessary to secure management approval. This involves
preparing project descriptions and providing cost/benefit estimates
for each proposed project. A quality improvement team should be
identified for each proposed project, as well. To ensure that the qual-
ity improvement effort will succeed, it is necessary to obtain the com-
mitment of management to provide the needed resources, including
the commitment of time for the personnel having the required skills
and capabilities to implement the project. Accordingly, the project
descriptions will identify members and assignments for the imple-
mentation team.

2.2.3 Structured Diagnosis

Performing a CBA-IPI will result in the identification of specific
problem areas, their symptoms, and their consequences (past, pres-
ent, and potential). This structured assessment will point the im-
provement effort in the direction of specific process areas that need
improvement, such as the type of project management functions that
should be included in project planning. The CBA-IPI assessment re-
lies on the collection of data and analysis of symptoms. This comes
about through the analysis of current and historical data. Often, dur-
ing the period when the improvement project is being planned in
detail, or even in the early stages of the plan’s implementation, new
data may have to be created. This facilitates focusing in on the root
causes of the process problems observed. Measurement data helps
quantify the extent of the problems and their effects. Such measure-
ments should be made with greater precision than may have been
utilized for data collected previously. Parameters not normally con-
sidered may have to be measured. Abnormal conditions and their
effects may also have to be considered, and included as part of the
measurements made.

Once the process improvement project begins, the existing pro-
cess to be improved needs to be studied in detail. This may include

34 Chapter 2

developing models of the process and forming theories about the
causes of the problems observed. Theory development may utilize
techniques such as brainstorming, cause and effect diagrams, and
force field analyses. The most promising theories should then be se-
lected and tested. This can be accomplished utilizing Pareto analy-
ses, conducting experiments, and collecting and analyzing new data.

The intent is identify the root causes of the process problems
and propose solutions. When the process improvement projects were
identified, first cut solutions for the problems were proposed. This
effort results in a refinement of the proposed solution—one that is
based on detailed data.

2.2.4 Preparing People—Guidelines for Introducing Change

Implementing change is not done easily. People in an organization
may often talk about the need for change, but often, the changes
they would like to see are changes that ‘‘other people need to make.’’
In order to implement change effectively, it is essential to be cogni-
zant of the people aspect—cognizant of the fact that changes are
likely to cause disruption: disruption in how people perceive things,
and how they behave (Figure 2.1).

Figure 2.1 Reaction to change from initial exposure to acceptance.

Basics of Quality Management 35

There are a number of things to be cognizant of regarding the
behavior of people when it comes to change introduction. The follow-
ing list addresses most of these concerns:

1. Be aware of the existence of a culture in the affected organi-
zation. The existing culture will greatly influence the abil-
ity to introduce change. A culture that values the ‘‘cowboy’’
approach to software development will resist efforts to in-
troduce structure and discipline into the development pro-
cess. Be aware that a change which affects the pattern of
behavior of a culture will generate resistance.

2. Be aware that the real causes of resistance are frequently
not stated. For instance, strong resistance to the introduc-
tion of peer reviews may reflect a fear on the part of those
resisting that an objectively conducted review may expose
them. They may not be the competent developers they have
made themselves out to be. Consequently, it is important
to identify which aspects of the culture will be threatened.
Proposed changes should specifically address the benefits
which offset these threats.

3. Secure active participation of members of the culture dur-
ing planning and implementation. Establish an environ-
ment where people at all levels can feel that they had a
share in the activity. Everyone then becomes an owner of
the process improvement effort.

4. Start with a small implementation, for example, a pilot
project. Use results to secure wider acceptance.

5. Use specific techniques to gain acceptance of the process
improvement effort. Remedy specific causes of resistance.
Utilize persuasion when necessary. Offer additional desir-
able changes. Provide an environment where the culture
can be changed (e.g., by education or by showing how life
will be made easier as a result).

6. Allow time to achieve acceptance. Don’t expect overnight
results.

7. Avoid surprises. Surprises can often be an effective way
of creating obstacles to achieving the desired goals. Don’t
spring changes on the organization without warning.

8. Energy levels vary over time as organizations move to
achieve acceptance after a challenge to the status quo has

36 Chapter 2

been initiated. A striking analogy to how organizations re-
act to change can be derived from a model developed by
Kubler-Ross [7], which describes how people with fatal ill-
nesses prepare themselves for death. The model is pictured
in Figure 2.1. Many organizations will recognize specific
examples of how they faced the challenge: going through
the stages of denial, anger, bargaining, depression, and fi-
nally acceptance of the much needed change.

2.2.5 Process Improvement Projects

Process improvement projects are structured to address specific
problem areas. For instance, if the requirements definition activity
results in poorly defined requirements, designs and subsequent im-
plementations in code will be in error. Process improvement in this
case would focus on improving the ability to define requirements
more accurately.

In order to accomplish improvements, measures of the existing
process and changes to it must exist. This requires that we:

1. Study the current process and its outputs to identify vari-
ables related to quality

2. Develop measures of those variables
3. Create a format to collect data

Processes have either ‘‘common cause variation’’ or ‘‘special
cause variation.’’ Common causes are in the system itself. Examples
of common causes include the consistency of applying standards to
the development process, or the training given to the developers.
Special causes refer to variables that are not part of the system.
Examples of special causes include the required use of customer-
furnished software which turns out to have poor quality, a malfunc-
tioning workstation, or a new developer using inappropriate proce-
dures.

Typically, actions on special causes can be dealt with at the
worker or first supervisory level. Actions on common causes usually
involve major changes that require the attention of higher manage-
ment. Special causes are dealt with first so that the process can be
stabilized. It is then possible to address common causes and improve
overall performance.

After the process changes, management must evaluate the ef-

Basics of Quality Management 37

fect of the change relative to the original goals. If the changes lead
to improvements, then steps are taken to make the changes perma-
nent. We standardize the changes. If there has been no significant
improvement, then other possible causes must be investigated.
Changes could include changing standards, work methods, suppli-
ers, or providing new training to developers.

Once a process has been improved, the improvement must be
maintained. We monitor the process to make sure we hold the gains
we have made. Data collection for monitoring is expected to be a
regular task of the people involved in implementing the process.

Process improvement efforts are a continuous activity for ev-
eryone. Employees at all level should be continuously searching for
new ideas, improvement opportunities, and identification of cus-
tomer needs.

2.2.6 Maintaining the Level of Improvement

Behavioral psychology studies how learning is accomplished. It often
does this by studying animal behavior in controlled settings and ex-
tending their findings to human life. One form of learning is referred
to as operant conditioning. In operant conditioning, a reward is given
for performing a desired act. For instance, laboratory rats may be
trained to press a lever in order to receive a food pellet. Pressing the
lever is the desired behavior, and the receipt of the food pellet is the
reward. Training, in this instance, will begin with the rat receiving
a food pellet for every lever press. It will then progress to where the
rat receives a pellet for every X number of presses, and then proceed
to where the rat is receiving reinforcement for the desired behavior
on a random schedule.

It has often been observed that when rats progress to the point
where they are on a random reinforcement schedule, the rat will
effectively rest for a short period of time after getting the reward
before beginning the lever pressing again. This is generally not a
function of the rat’s hunger level, but more of a basking in the glow
of having achieved something.

There are parallels here for process improvement. Many orga-
nizations achieve some initial level of process improvement, and
then rest on their laurels. Far too often, the resting period becomes
so long that process improvement is eventually abandoned. It is not

38 Chapter 2

enough just to achieve an initial level of improvement—it must be
sustained.

There are a number of ways of maintaining the energy level.
One way is to measure performance regularly. As improvements oc-
cur, and figures become available to show how much improvement
has occurred, this often helps to serve as reinforcement for the effort.
Consequently, it is also important to publicize quality improvement
success. Without the feedback, the effort can soon die on the vine.
People will begin to feel that nothing has occurred or that the im-
provement was implemented, but not successfully.

Use new standards of performance. Compare current activity
with new standards. For instance, if the old standard of perform-
ance was to produce code that went into beta test with a fault den-
sity of 6 defects per thousand lines of code, and after one year
of process improvement, the quality had improved to 4.5 defects per
thousand lines of code, the new level should become the standard.
It becomes a real challenge to better the improved levels of perfor-
mance.

Correct problems quickly to maintain performance. There are
two reasons for this. One is to recognize achievement. As was pointed
out in the previous paragraph, if the organization is producing at
higher levels of quality, it is essential to maintain that level. Provid-
ing encouragement for good performance is fundamental. By the
same token, when problems arise that adversely affect new, im-
proved levels of performance, that must be corrected as soon as possi-
ble. Allowing problems to fester will only demotivate.

The second reason is to help other parts of the organization
with similar problems. Utilization of ‘‘lessons learned’’ is an impor-
tant part of infusing process improvement throughout the entire or-
ganization.

Reinforcement of process improvement involves periodic reas-
sessment. In other words, start the process improvement cycle
again. Quality improvement must become a continual cycle. Assess
the present situation. Determine the degree to which process im-
provement has been achieved. Don’t look only for problems, but look
also for situations in which potential problems can be prevented.
Look for the proactive improvement opportunities, as well as reac-
tive improvements. Review the priorities of the remaining improve-
ment project proposals in light of the new data. Perhaps some of the

Basics of Quality Management 39

Figure 2.2 What many believe.

priorities will have changed. Perhaps some new process improve-
ment project having a higher priority will be required.

2.2.7 Quality Gets Results

There is a mistaken notion to the effect that if orderly processes are
introduced into the daily work environment, quality may go up, but
productivity will go down. The flip side of this notion is that if pro-
ductivity goes up, quality will decrease. These notions are illustrated
in Figures 2.2 and 2.3. In actuality, neither are true. Improvement
in quality results in improvement in productivity (see Figure 2.4).

Figure 2.3 The apparent dilemma.

40 Chapter 2

Figure 2.4 Resolving the quality–productivity dilemma.

There are many examples that can be utilized to describe the
benefits experienced by hardware manufacturing companies, service
organizations, and software houses. We will focus on examples from
the software industry. The following are some examples of the bene-
fits that have accrued to these software organizations from process
improvement, i.e., improvement in quality and productivity.

• Hughes Aircraft Co., in Fullerton, CA, invested $500,000 in
software process improvement and reduced project overruns
by $2 million/year.

• Raytheon Equipment Division, Software Systems Labora-
tory, invested $1.1 million in software process improvement
and reduced the 1990 cost of non-conformance by $8.2 mil-
lion, resulting in a return on investment (ROI) of 7.7.

• Fujitsu: In the late seventies, 40% of software projects were
over budget and behind schedule. Five years later they re-
duced it to 15%, and slashed defect rates by a factor of 10
(through the use of increased code and design reviews).

• IBM Federal Systems Division produced 500,000 lines of
source code (500 KSLOC) for use in the on-board space shut-
tle systems, and 1.7 million lines of source code (MSLOC) for
ground support systems. Through a focus on early detection
(over 85% of errors are discovered prior to integration
build), they reduced defects from 2/KSLOC to 0.11/KSLOC
in three years.

• AT&T Network Software Center: Implemented over 100
quality improvement projects in the late 1980’s. As a conse-
quence, they succeeded in reducing open faults from 700 in
1989 to 200 in 1991, and reduced the development cycle
from two years to 6 months.

Basics of Quality Management 41

Conversely, we find that the failure to improve quality is costly. The
1979 GAO report [8] found that in a sample of $6.77 million worth
of information systems software projects for the Department of De-
fense (DoD), only 2% of the projects were ultimately delivered in
usable condition. Almost a third were paid for but never delivered.
Almost 50% were delivered but never used, because the amount of
rework required to make them useful was prohibitive. A more recent
study [9] found that the situation had not changed very much since
the earlier study had been performed. It was findings such as these
that contributed to initiating the projects sponsored by the DoD to
foster process improvement. One such project resulted in the estab-
lishment of the Capability Maturity Model (CMM) and associated
assessment methodologies.

T. Capers Jones [10,18], reports that canceled projects consume
15% of all software efforts in the US each year, costing some $14.3
billion and a loss of 285,000 person years in programming time. In
general, the larger the project, the greater is the probability of can-
cellation. For small systems, the cancellation rate is around 7%. For
large systems in excess of one million source lines of code, the cancel-
lation rate approached 50%, and 65% for even larger systems. These
included operating systems, telecommunications systems, major de-
fense systems, and the like. Projects are canceled for a variety of
reasons, such as the need for the application disappearing. But
many of the causes relate to poor process implementation, such as
enormous cost overruns, or the application being too far behind
schedule.

Clearly, there is a significant cost to organizations for failure
to implement process improvement—or even to take a first look at
how well their processes are working for them.

2.2.8 Senior Management Involvement

Institutionalizing process improvement requires the proactive
involvement of senior management. Everyone has heard the age-old
adage that quality is everybody’s business. It is not the sole function
of the Quality Assurance organization or the software developers or
senior management. Everyone must be involved.

It is especially important that senior management be involved.
Management must lead the way. Management’s actions indicate to
the organization what their level of commitment is to the process

42 Chapter 2

improvement effort. The rest of the organization takes their cue from
senior management. If senior management regards adherence to
process as dispensable, no one in the organization will pay much
attention to it. On the other hand, if senior management exhibits a
strong commitment to process, the rest of the organization will fol-
low. Management must also commit the necessary resources (funds,
personnel, computer resources). Their support must be visible. The
commitment to process and process improvement must be conveyed
to lower levels of management. Their buy-in is essential for commit-
ment to process to work. Middle management has often been called
the ‘‘black hole’’ of management. If they don’t buy in, or sense that
management’s commitment is not real, senior management’s mes-
sage will progress no lower.

It is not uncommon to see organizations where the senior man-
ager has emphatically stated his or her commitment to process im-
provement, only to later pull the rug out from under the effort. For
example, personnel who were assigned to process improvement proj-
ects are effectively told that they would have to do these activities
in their spare time. Process improvement cannot be performed as a
spare time activity. It must be done as a specific work assignment
within the context of the normal work day. We have also seen senior
managers state their commitment to process improvement, only to
have their middle managers undercut the effort by stonewalling.
The senior manager cannot merely state a dictum and not be actively
involved. He or she must follow up with their lower level managers
to ensure that they are implementing his or her requirements.

There is another aspect to proactive involvement: participation
in the selection and implementation of the process improvement
projects. We have alluded to this in Section 2.1.4. We will discuss
more about that in the next chapter.

2.3 PROCESS MANAGEMENT

2.3.1 Overview of Process Management

A process is the organization of people, materials, machines and
methods into work activities needed to produce a specific end result
in a particular environment. When applied to software, it translates
into ‘‘the total set of software engineering activities needed to trans-
form a user’s requirements into software’’ [11]. It is a repeated se-

Basics of Quality Management 43

quence of activities characterized as having measurable inputs,
value added activities, and measurable outputs. Analyzing the pro-
cess is the key to improvements.

Quick fixes to problems are how we have operated in the past,
but quick fixes don’t usually result in improving the process in the
long-run and can actually result in a different problem surfacing
elsewhere.

Analyzing the existing process is the first step and is the most
important one. Flowcharting (or any other graphical process descrip-
tion) is generally an effective technique for analyzing the process.
Flowcharting can identify duplication of work, steps that can be
eliminated, and steps that may need to be standardized among
branches, sections, etc. Analysis also should include identification
of our customers and what they need and expect from us.

Knowledge of who the customers are and what their needs are
is essential. It is very obvious that someone who comes into a store
and buys an item is a customer, or that a company buying a ‘‘shrink-
wrapped’’ accounting software package is a customer. But these are
not the only types of people who are customers. Everyone is a cus-
tomer and everyone is a supplier. For example, a software designer
who performs design based on a system analyst’s definition of the
requirements is a customer. The customer is the designer and the
system analyst is a supplier to the design group who will implement
the requirements in design.

We can begin thinking of the next person in the process as a
customer by asking ourselves the following questions:

• How does a change in what we do affect other parts of the
process?

• Do we know what our rework rate is? (In terms of software,
this relates for example to correction of defects in the design
or the code).

• What is causing the problems?

Analyzing the process provides answers. In performing this
analysis, we have to learn how to deal with facts, not assumptions.
Part of the way of doing this is to rely on feedback related to the
process, that is, feedback from the customers and suppliers that par-
ticipate in the process. To measure progress, we need to know what,
how, and when to measure. We need facts or data to know how the

44 Chapter 2

system is operating, and why. Do we know how our customers expect
us to perform and how well we are meeting their expectations?

Addressing these questions aids in the development of a quality
improvement plan. A well-developed plan enables an organization
to concentrate its resources on achieving quality improvements by
establishing measurable goals. The following are examples of mea-
surable goals:

• Reducing elapsed time for different activities in the soft-
ware development process

• Shortening delivery time
• Reducing error rates

Goals must be measurable and relevant to your mission. They
should provide a direct benefit to the customer. The achievement of
quality goals will require changes in process performance. A critical
task of management is to identify and define these needed changes.

2.3.2 Strategic Quality Planning

This section discusses the strategic planning process for software
quality improvement. The emphasis is on quality improvements.
The processes of quality planning and quality control are only briefly
referenced. Quality improvement is the organized creation of bene-
ficial changes in process performance levels. Quality planning, on
the other hand, is the activity of determining customer needs and
the development of products and processes required to meet those
needs. Finally, quality control is defined as the managerial process
during which actual process performance is evaluated and actions
are taken on unusual performance. (For more details on topics of
quality management see Juran [12]).

Godfrey [13] lists seven milestones that delineate a road map
for the top management of organizations planning their journey to-
wards quality improvement. With some modifications, these mile-
stones are:

• Awareness of the competitive challenges and your own com-
petitive position

• Understanding of the new definition of quality and of the
role of quality in the success of your company

• Vision of how good your company can really be

Basics of Quality Management 45

• Plan for action. Clearly define the steps you need to take to
achieve your vision.

• Train your people to provide the knowledge, skills and tools
they need to make your plan happen.

• Support actions taken to ensure changes are made, problem
causes are eliminated and gains are held.

• Reward and Recognize attempts and achievements to make
sure that quality improvements spread throughout the com-
pany and become part of the business plan.

Quoting Juran [14]: ‘‘For most companies and managers, an-
nual quality improvement is not only a new responsibility; it is also
a radical change in style of management—a change in culture . . .
All improvement takes place project by project and in no other way.’’

The message is clear: (1) management has to lead the quality
improvement effort, and (2) any improvement plan should consist of
stepwise increments, building on experience gained in initial pilot
projects, before expanding horizontally to cover all sub-processes.

A generic plan for driving a software development organization
towards continuous process improvement and a case study imple-
mentation of the plan is presented in Kenett and Koenig [15] and
Kenett [16]. An expanded adaptation of this plan consists of the fol-
lowing five steps:

1. Define an integrated software development process.
2. Support this framework with an automated development

environment, where possible.
3. Identify key areas for process improvements.
4. Within these areas: assign ownership, determine metrics,

create feedback loops, provide training, and establish pilot
projects.

5. Support and fortify the continuous improvement efforts.

The first three steps should be carried out by an interdisciplin-
ary team of experts from the various software development activi-
ties. The last two steps have to involve management and working
groups centered around the main development sub-processes. Step
three sees the phasing-out of the experts team and the phasing-in
of improvement projects and middle management direct involve-
ment. The whole effort requires a dedicated ‘‘facilitator’’ and man-
agement’s commitment and leadership. The facilitator function is

46 Chapter 2

sometimes carried out by the SEPG (see Chapter 1). The global ob-
jective is to include every member of the software development orga-
nization, including its suppliers and customers, in the continuous
process improvement effort.

2.3.3 Software Process Issues in Strategic Quality Planning

Identification of the key areas for process improvements is one of
the hardest tasks concerned with process improvement. Without
some sort of structure in place to accomplish this, the efforts will be
diffuse, disconnected, and uncoordinated. For instance, if you bring
10 experts from the organization into a meeting and ask them to
brainstorm what’s needed to improve the process, more than likely,
you will get something on the order of 50 to 100 ideas about what
could be done. The task, then, is to make order out of chaos: how to
boil this large number of ideas down into a few essential projects,
with some sort of priority assigned to each.

There are various ways of bringing structure to the process.
The use of an accepted model to characterize how a mature software
development organization produces software is an essential ele-
ment. There are a number of such models: the CMM and ISO’s qual-
ity and software process standards (9000-3 and 12207) are such ex-
amples. We will discuss these in a little more detail in Chapter 3.

The CMM, as indicated in Chapter 1, has an appraisal method-
ology associated with it, called the CMM-Based Appraisal for Inter-
nal Process Improvement (CBA-IPI). The appraisal methodology is
used to determine where an organization currently fits within the
CMM. Knowing this, and knowing what practices exist or don’t exist
relative to the CMM, an organization can use the results of an as-
sessment as the basis for planning and performing process improve-
ment. It is thus a very useful device for organizations who are inter-
ested in software process improvement.

In comparison to ISO 9001 or 9000-3, the CMM can be consid-
ered to be more effective for organizations planning software process
improvement. ISO 9001 or 9000-3 is effective for initially establish-
ing a quality system. Because of the requirements for corrective ac-
tion, it fosters process improvement. On the other hand, the CMM
has a built-in prescription for process improvement. It specifies re-
quired practices for implementation at increasing levels of capabil-
ity. For those organizations that prefer ISO standards, ISO 12207

Basics of Quality Management 47

could be used more effectively than 9000-3 for process improvement
because of its coverage of topics, but it has no associated assessment
methodology as yet. The determination of the degree of compliance
with 12207 is, therefore, more subjective than with the CMM or any
of the other ISO 9000 series of standards.

It is important to have as a starting point some effective model
of how organizations develop software. With this as a starting point,
comparisons can be made of the current state of the practice against
the model. Long range strategic planning starts with the determina-
tion of long range objectives, for example, reaching level 3 of the
CMM in four years. Having selected an effective model of how orga-
nizations improve in capability, it is then necessary to determine the
current state of the practice. This involves determining deficiencies
against the model and prioritization of the actions needed to elimi-
nate the deficiencies. Many models are available, and an organiza-
tion, when choosing a model, should choose one that is suitable for
their marketplace. For instance, software organizations that do
business in Europe will undoubtedly have to meet the requirements
of ISO 9001 or 9000-3, while those in the U.S. that do business with
the U.S. Government may have to meet the Level 2 or 3 require-
ments of the CMM. A number of U.S. businesses are now requiring
their suppliers to be operating at Level 2 or 3 of the CMM. Compa-
nies like Boeing and the Norfolk and Western Railroad have re-
quired this degree of capability of their suppliers in certain cases.
Other commercially-based U.S. and international companies have
imposed the CMM for their own internal operations.

A final note: Measurement is an extremely important part of
strategic planning. No process improvement project should be imple-
mented unless there is some measurable pay-off for the organiza-
tion. These can ultimately be related to dollars earned, but in their
most apparent form, they may be perceived as reduced time to mar-
ket, improved productivity (for example, in terms of source lines of
code produced per developer per day), improved quality (such as re-
duced errors per line of code or function point in the delivered soft-
ware), or improved customer satisfaction (as measured by a cus-
tomer survey). In order to know if the improvement has (or will)
yield positive results, an initial baseline should be established. With-
out that baseline, it is impossible to know if any improvement has
been achieved. Many organizations do not collect even fundamental
measurements, such as productivity or quality measures. For these

48 Chapter 2

organizations, meaningful strategic planning will be made more dif-
ficult.

2.3.4 Software Process Management Principles

Would you buy a car from a company that built them without draw-
ings, specifications, quality control, or the like? Hardly! One can eas-
ily imagine what the quality of such a car would likely be. Yet, the
world continues to buy software from companies that effectively op-
erate in that kind of mode! To all intents and purposes, these compa-
nies are operating without a process. The significance of this reflects
itself in the quality of the software they produce.

There is no need to dredge up tons of data showing that, too
frequently, software is delivered late, over budget, and containing
far too many errors. Horror stories demonstrating these facts
abound. These problems occur because the organizations producing
the software have violated the basic premise of software process
management: the productivity of an organization and the quality of
the products they produce are governed by the quality of the pro-
cesses used. Only in recent years has there been data available to
indicate a correlation between process and software product quality.
In Chapter 1, data from the SEI was presented showing that for
approximately 606 organizations that had had assessments per-
formed, approximately 73.3% of these sites did not employ a defined
software development process (see Figure 2.5 and Reference 17).

Figure 2.5 Process capability benchmarks.

Basics of Quality Management 49

This meant that no common practices were utilized (institutional-
ized) within these organizations, if any practices were codified at all.
Where any practices may have been codified, they could vary from
project to project, even though these projects were typically within
the same application domain. In other words, there were no benefits
gained from lessons-learned, and the organization had not as yet
availed itself of the advantages that could accrue from practices that
proved to be beneficial. Only 24.3% of the sites surveyed had even
achieved basic management control over their projects.

Over the last 40� years, software development has been evolv-
ing from an art form to a disciplined practice. In the early days of
software development (Table 2.2), application development was al-
most entirely oriented toward the production of custom software,
which was executed in batch mode. A user requested a program to
be developed for a specific application, such as time-keeping records
calculated from data on time cards, or the calculation of a trajectory
using a least-squares fit of observations recorded by independent ci-
netheodolites or ground radars. The ‘‘requirements’’ for the program
were worked out verbally between the primary user and the pro-
grammer. In general, no organized development process was uti-

Table 2.2 Evolution of Software Development

Software use Software development
Time period characteristics characteristics

1950 to mid-60s Batch processing Custom Single Developer/Main-
Software Limited Distri- tainer Implicit process
bution non-existent docu-

mentation
1960 to mid-70s Multi-user Real-time Multiple Developers proj-

Database Product ect teams rudimentary
software methodologies develop-

ment as art form
1970 to mid-80s Distributed systems mi- Rudimentary processes

croprocessor applica- software tools develop-
tions low-cost hardware ment activity still an
consumer market art form

Current decade Client/server expert sys- Process focus case envi-
tems parallel architec- ronments 4GLs need
tures for flexibility

50 Chapter 2

lized. Formal documentation of requirements or design was virtually
non-existent. Occasionally, programmers maintained notebooks to
record notes of conversations with the user and some design notes;
however, the content requirements were rarely formalized, and the
content varied considerably from programmer to programmer. We
have evolved from that state to one today where successful, timely,
cost-effective software production is heavily dependent on effective
processes.

In Section 2.3.1, we defined software processes. To reiterate,
software process is the total set of software engineering activities
needed to transform a user’s requirements into software. These in-
clude the activities, methods, practices, and transformations that
are used to develop and maintain software and its associated prod-
ucts, i.e., documentation and code. The development and mainte-
nance efforts consist of many such clusters of activities, methods,
practices, and transformations. There are processes for developing
requirements. There are processes for the production of a detailed
design. There are configuration management and quality control
processes. An effective process for development or maintenance of
software consists of the careful linkage of these processes, such that
there is an end-to-end integration of them. Each such process sup-
ports another, and facilitates the effective execution of the process.
For example, configuration management supports the development
of requirements by ensuring that the requirements, once estab-
lished, are baselined, and that a mechanism exists to ensure the
orderly management of changes to them. Quality control supports
this set of activities, as well, by ensuring that reviews of the require-
ments for technical adequacy take place, and by auditing the con-
figuration management process to determine if the integrity of the
requirements has been compromised.

Process improvement cannot occur in a chaotic environment.
If there is no attempt to characterize the current process, the situa-
tion is too labile to perform any meaningful process improvement.
One needs a stable process, no matter how inefficient or cumber-
some, to begin to characterize it. Why is it so necessary to character-
ize the process? Process improvement requires process measure-
ment. It is impossible to control that which cannot be measured. If
the process is random, ad hoc, chaotic, then the organization’s activi-
ties are more like Brownian motion, making the measurement prob-
lem all the more difficult.

Basics of Quality Management 51

Juran [5] speaks of chronic waste. Chronic waste can be de-
scribed as a statistical measure of the minimum expected defect rate.
For a manufacturing process, the chronic level of waste can be easily
illustrated by looking at, say, the production scrap rate. It can be
calculated from production run to production run by calculating the
mean and the standard deviation. For a statistically significant sam-
ple of production runs, the chronic level of waste would be the scrap
rate with a range of 3 sigma units above and below the average. For
software this can be illustrated by the following example. A number
of observations are made of the defects found during a large number
of code walkthroughs that were conducted for a number of projects.
For the sake of discussion, let us say that the mean number of defects
measured were 2 per KSLOC, and the standard deviation was 0.23.
The chronic level of waste would then be 1.31 defects per KSLOC
with a range of 1.31 to 2.69.

This chronic level of waste discussed above is a function of the
quality of the development process used. Waste is chronic because
the process was planned that way. We find that organizations that
do very little quality planning will tend to produce software with
high levels of chronic waste that can vary drastically from project
to project. Organizations that have a well-defined process in place
will tend to have lower levels of chronic waste, and more consistency
in the quality of the software product from project to project. Fur-
thermore, organizations who focus on process improvement as well,
will achieve gradual lowering of their chronic level of waste.

If we want to lower the level of chronic waste, we need to know
the context in which it occurs. Chronic waste provides an opportu-
nity for improvement. Organizations that seize this opportunity are
involved in process improvement.

2.3.5 The Unique Characteristics of Software Development
and Maintenance Processes

Processes are easily recognized in environments with repetitive op-
erations. For instance, a bank teller handles customer requests us-
ing a procedure that is designed to provide customers with a uniform
level of service. In order to achieve this uniformity, banks typically
provide employees with training programs and written material de-
scribing policies and procedures. In a second example, a machine
operator who automatically inserts electronic components into

52 Chapter 2

printed circuit boards has a set of specifications listing requirements
for the inserted components, an operator’s manual to follow, a main-
tenance schedule to comply with, and a troubleshooting handbook
to help overcome unexpected problems.

Both the bank teller and the machine operator are in charge of
processes where ‘‘inputs’’ are transformed into ‘‘outputs.’’ The teller
satisfies a customer request using a form completed by the customer,
a terminal, a printer, verbal instructions from his supervisor and
what he has learned in the bank’s training program. All these are
inputs to the process. The teller transforms these inputs into an out-
put or ‘‘product’’ that has an impact on the customer. This transfor-
mation is called a ‘‘process.’’ The rendered service is the output. The
inputs are provided by ‘‘suppliers,’’ some internal to the bank and
some external.

A key factor in improving processes is feedback. One prime
source of feedback on the performance of the process is derived from
simply asking the customer. This is typically done using written sur-
veys and customer interviews. An important characteristic of pro-
cesses in the service industries is that their products cannot be
stored and that there is no possible inventory build-up. On the other
hand, the machine operator can produce batches of circuit boards
that can wait on carts or other storing devices for the next manufac-
turing step to begin.

The process of inserting components transforms bare circuit
boards into assembled boards, ready to be soldered and tested. The
feedback on the components’ insertion process comes from several
sources: Internal feedback from the operator’s self-inspection proce-
dure, using the specifications for the inserted components, and ex-
ternal feedback coming from the soldering and testing processes.
These sources of feedback provide information on the degree to
which the automatic insertion process meets specified requirements
and internal customers’ needs. Specifically the testing group can
be perceived as an internal customer of the automatic insertion
group.

A high percentage of error free assembled boards, when first
tested, is a basic requirement of the test group. High failure rates
result in ‘‘waste’’ consisting of high work-in-process inventory, re-
testing, rework activities and long production cycle times. Again,
like in the bank’s teller case, the process, its internal customers, and

Basics of Quality Management 53

its internal suppliers are relatively easy to identify. Feedback loops
can be naturally created and activated.

Characterizing the software development process requires
characterizing all the sub-processes as well. The basic strategy be-
hind a Software Quality Improvement Plan consists of:

1. Identifying the sub-processes, their inputs and outputs,
their internal suppliers, and internal customers.

2. Constructing relevant feedback loops and organizational
structures to induce improvements of the various software
development sub-processes.

One might argue that there are no ‘‘processes’’ in software de-
velopment since each requirement document, software module, or
software version is unique. However the steps involved in their de-
velopment are repetitive.

Recognizing the existence of development processes is a neces-
sary first step towards process improvement. Like in the electronic
assembly plant, inventory can pile up between sub-processes such
as carts with printed circuit boards waiting to be soldered or tested.
In software development the work in process inventory takes the
form of software modules waiting to be integrated or new features
that have to go through detailed design or coding. Processes that ‘‘do
it right the first time’’ typically carry low levels of work in process
inventory. The corollary being that high work in process levels and
delays are indicators of poor performance.

2.4 SUMMARY

In this chapter, we discussed some basic concepts and principles of
quality management. This was then followed by a discussion about
the improvement process: problem recognition, project selection, di-
agnosis, preparing the people for change, implementing the solution,
and maintaining the improvement. We then discussed the general
principles of process management. The discussion was discussed at
somewhat of a high level in order to lay the ground work for what
follows in the remainder of the book: the specifics of implementing,
monitoring, and measuring process improvement.

54 Chapter 2

REFERENCES

1. Schulmeyer, G. Gordon. ‘‘Software Quality Assurance—Coming to
Terms,’’ in The Handbook of Software Quality Assurance, Schulmeyer,
G. Gordon and McManus, James I., eds., New York: Van Nostrand
Reinhold Company, Inc., 2nd ed., 1992.

2. Jones, T. Capers. Applied Software Measurement, New York: McGraw-
Hill, 1991.

3. McCabe, Thomas J., and Schulmeyer, G. Gordon. ‘‘The Pareto Principle
Applied to Software Quality Assurance,’’ in The Handbook of Software
Quality Assurance, Schulmeyer, G. Gordon and McManus, James I.,
eds., New York: Van Nostrand Reinhold Company, Inc., 2nd ed., 1992.

4. GovernmentAccountingOffice(GAO).ReportNo.GAO/NSIAD-91-190,‘‘U.S.
Companies Improve Performance Through Quality Efforts,’’ May 1991.

5. Juran, Joseph M. Making Quality Happen, Juran Institute, 1991.
6. Dobbins, James. ‘‘The Cost of Quality,’’ in The Handbook of Software

Quality Assurance, Schulmeyer, G. Gordon and McManus, James I.,
eds., New York: Van Nostrand Reinhold Company, Inc., 2nd ed., 1992.

7. Kubler-Ross,Elisabeth.On DeathandDying,NewYork:MacmillanCo.,1969.
8. Government Accounting Office (GAO). Report No. FGMSD-80-4,‘‘Con-

tracting for Computer Software Development: Serious Problems Re-
quire Management Attention to Avoid Wasting Additional Millions,’’
November 9, 1979.

9. Government Accounting Office (GAO). Report No. IMTEC-89-36, ‘‘Au-
tomated Information Systems: Schedule Delays and Cost Overruns
Plaque DoD Sysytems.’’

10. Jones, Capers T. ‘‘Process Assessment and Software Risks,’’ Cross-
Talk, Software Technology Support Center, Nov. 1992.

11. Humphrey, Watts S. Managing the Software Process, New York: Addi-
son-Wesley, 1989.

12. Juran, Joseph M. Juran on Leadership for Quality: an Executive
Handbook, The Free Press, 1989.

13. Godfrey, A.B. ‘‘Buried Treasures and Other Benefits of Quality,’’ The
Juran Report, No. 9, Summer 1988.

14. Juran, Joseph.Juran on Planning for Quality, New York: MacMillan,1988.
15. Kenett, R.S. and Koenig S. ‘‘A Process Management Approach to Soft-

ware Quality Assurance,’’ Quality Progress, pp. 66–70, November 1988.
16. Kenett, R.S. ‘‘Managing a Continuous Improvement of the Software

Development Process,’’ Proceedings of the Annual Conference on Qual-
ity Improvement, IMPRO 89, Juran Institute, Inc., 1989.

17. ‘‘Process Maturity Profile of the Software Community 1997 Update,’’
Software Engineering Measurement and Analysis Team, Software En-
gineering Institute, Carnegie Mellon University, October 1997.

18. Jones, T. Capers, Patterns of Software Systems Failure and Successes,
Boston: Thomson International Computer Press, 1996.

3
ISO 9000, SEI Capability Maturity
Model (CMM), and Continuous
Software Process Improvement

3.1 ISO STANDARDS

In the previous chapter, we discussed general principles of process
management and continuous process improvement. We amplified the
discussion with examples of how these principles are applied to soft-
ware organizations. In this chapter,we will describe the application of
these principles to software organizations in more detail, illustrating
concrete methodologies that can be implemented. We begin by dis-
cussing standards developed and adopted by the International Orga-
nization for Standardization (ISO) located in Geneva, Switzerland.

There are a number of ISO Standards which are applicable to
software development, acquisition, maintenance, and quality. These
are ISO 9001, ISO 9000-3, and the emerging ISO 12207 and SPICE
standards. Many organizations implement these standards in order
to be registered with ISO as being compliant with one or more of
their various standards. There are good business reasons for doing
so. In many parts of the world, registration as being compliant with
one or a number of ISO standards is essential in order to conduct
business in these countries. Duly-authorized representatives of ISO
conduct audits of organizations to determine their compliance.

ISO 9001 is a quality system standard which is applicable to
the design, manufacturing, installation, test, and maintenance of
systems, typically under a two-party agreement. The text of the re-
quirements of ISO 9001 are very much hardware system oriented.

55

56 Chapter 3

As a consequence, they are sometimes considered to be somewhat
difficult to apply to software. Consequently, the need arose to de-
velop a guide on the application of these requirements to software.
The guide is ISO 9000-3. Nonetheless, some organizations utilize
9001 as the basis for developing their software quality system,
rather than 9000-3.

ISO 9000-3 is a guidebook on applying the requirements of ISO
9001 to software development and maintenance organizations, and
not a software quality system standard. It describes a number of
elements that should be included in an organization’s quality system
for software. These are organized into three major areas: framework,
life-cycle activities, and supporting activities. Examples of these ele-
ments include:

• Establishment of a Quality Program (framework)
• Corrective Action (framework)
• Contract Review (life-cycle activities)
• Development Planning (life-cycle activities)
• Design and Implementation (life-cycle activities)
• Maintenance (life-cycle activities)
• Configuration Management (supporting activities)
• Quality Records (supporting activities)
• Measurement (supporting activities)

For the most part, ISO 9000-3 and ISO 9001 specify only mini-
mal requirements for the elements covered in these standards. Effec-
tively, they require that the organization has a quality system and
a quality plan that addresses these elements, and that the organiza-
tion specifies what practices it will apply in implementing these ele-
ments. Furthermore, there is a requirement that an organization be
audited as part of the registration process. Periodic follow-up audits
are conducted every six months subsequent to the initial registration
to maintain the registration. Registered organizations must, there-
fore, demonstrate continuous compliance with their quality system
documentation. Through the corrective action element of the stan-
dards, process improvement is addressed, although somewhat indi-
rectly.

In essence, establishing compliance to the ISO standards plays
a role in strategic quality planning. Registration is a lengthy process,
involving the establishment of quality plans, procedures, etc. Pre-

ISO 9000, CMM, and CSP Improvement 57

liminary audits may be used as a means of determining the readi-
ness for registration. The process of registration can take from one
to two years from the date of inception to accomplish.

Another ISO standard, called SPICE (Software Process Im-
provement Capability dEtermination), is nearing completion. It is
similar, in some respects, to the CMM in that it has an organization
of maturity levels with defined key processes. It also has an assess-
ment methodology associated with it, which will be in the public do-
main. In its current form, the key process areas are selectable. Each
software development organization is free to define which key pro-
cesses they wish to be evaluated against.

SPICE is currently undergoing Phase 2 field trials. Formal re-
lease of SPICE is expected sometime in 1998.

The CMM, by contrast, when compared to most of the ISO stan-
dards, is fairly prescriptive. As we will see in the next section, for
each Key Process Area (KPA), the Key Practices define what prac-
tices the organization must be performing in order to have that KPA
under control. The Key Practices don’t define how things should be
done—only what. This leaves the organization free to choose what-
ever methodologies makes sense for the particular types of applica-
tions they produce. For example, for the Level 2 Software Project
Planning KPA, one of the Key Practices requires the development
organization to establish a software life cycle with predefined stages
of manageable size for each project. There is nothing that mandates
a waterfall model or a spiral model or incremental development, etc.
In fact, at Level 2, each project is free to utilize a different develop-
ment cycle model, just as long as one is specified.

When compared to the requirements of ISO 9000-3, the CMM
is definitely more prescriptive. The same is true if we compare it to
the degree of rigor specified in ISO 12207. ISO 12207 is a software
life cycle standard. It tends to be somewhere between ISO 9001 (or
ISO 9000-3) and the CMM in its extent of specificity. ISO 12207
tends to cover many of the same kinds of items included in the CMM.
Like the comparison to 9000-3, the CMM has many areas of overlap
with 12207, but there are also many areas that are unique to both
standards. For instance, because 12207 is a life cycle standard, it
covers maintenance more effectively than does the CMM. But the
CMM does a more thorough job in covering specific software develop-
ment practices (the ‘‘whats’’) that organizations should implement.

58 Chapter 3

3.2 THE SOFTWARE ENGINEERING INSTITUTE’S
CAPABILITY MATURITY MODEL (CMM)

In 1987, the SEI published the first [1] in a series of publications
[2–6] defining a Capability Maturity Model (CMM) for categorizing
the capability of software organizations to develop software. The
work of the SEI in defining a Capability Maturity Model and accom-
panying assessment methodology is an important contribution. It
has promoted significant improvements in quality and productivity,
and has led to large cost savings [7,8].

In Chapter 1, we briefly described the CMM to set the stage
for establishing a current process status baseline, as well as for the
development of a strategic plan for process improvement. Here we
describe the CMM in more detail. Capability is organized in CMM
into five levels (see Figure 3.1). At the Initial level (Level 1), no orga-
nized processes exist. Developers are free to utilize methods or tech-
niques of their own choice. Basic project control is non-existent. The
situation is sometimes described as chaotic and ad hoc. Software
quality is more a matter of chance, and is highly dependent on the
capabilities of specific individuals within the organization. Introduc-
ing high technology software tools is very risky for such an organiza-
tion.

Level 2 is called the repeatable level. At this stage of maturity,
development process within the organization is intuitive, rather

Figure 3.1 Capability maturity model.

ISO 9000, CMM, and CSP Improvement 59

than codified. Basic management control over projects has been
achieved. Because of these factors, the organization is able to master
tasks previously learned. For similar types of software projects, the
organization is able to repeat past successes. That is why this stage
of process maturity is labeled ‘‘repeatable.’’ Success on development
projects, however, is still very much dependent on key individuals,
and not on process, because there is no organization-wide or applica-
tion domain-specific codified process. In times of crisis, established
procedures are abandoned, and the organization’s behavior reverts
back to that of a Level 1 organization. Quality is still fairly variable
from project to project. Introducing technology is still a questionable
practice, except to facilitate tasks and practices that have been mas-
tered.

To reach Level 2, a software development organization must
put into place basic project management practices. This includes the
capability to estimate the size of the software to be produced, esti-
mate resources (including personnel) to execute the project, and
track progress against these estimates. Also included is the im-
plementation of software configuration management and quality
assurance practices. The capability to effectively manage the re-
quirements definition process and the capability to manage subcon-
tractors (if applicable), is also included.

Level 3 is characterized as the defined level. At this level, the
organization has defined and established the software development
and maintenance practices specific to the types of applications they
produce. They have put into place a set of standards and procedures
to codify these practices, and the organization follows them consis-
tently. In times of crisis, the defined process is not abandoned. Train-
ing in the implementation of these practices is planned for and pro-
vided. Peer reviews are performed as in-process evaluations of
product quality. There is a central focal point within the organiza-
tion (sometimes called the Software Engineering Process Group, or
SEPG) for overseeing the process definition (see also Section 2.1.4).
The development organization is no longer highly dependent on key
individuals in that the existence of a standardized process reduces
the critical dependence on key individuals. At Level 3, the introduc-
tion of technology can be easily accomplished, because the organiza-
tion will use it to facilitate the implementation of the defined pro-
cess. (Issues concerning the introduction of technology are also
under the purview of the SEPG). Quality variability is now signifi-

60 Chapter 3

cantly reduced. Software product quality is consistent from project
to project. A Level 3 organization may not necessarily be producing
the highest quality software, but it now has the wherewithal to start
focusing on improving process quality.

Above Level 3, the focus of the organization now shifts from
building an infrastructure to achieve consistent product quality to
establishing an infrastructure to improve process quality. Recall
from the principles of process management that the quality of a soft-
ware product is dependent on the quality of the process used to de-
velop it. At Level 4, the managed level, the organization is now fo-
cused on establishing a set of process measures, validating them,
collecting a data base of these measures, and begins to use them to
implement process corrective action, as applicable. Once these mea-
sures have been established and codified, the organization is now
ready to begin to use these measures to implement continuous pro-
cess improvement. At Level 5, the optimizing level, these measures
are not only being used to improve existing processes, they are also
being used to evaluate candidate new processes. In addition, they
are being used as the basis for determining the efficacy of introduc-
ing new technologies into the organization. The process for a Level
5 organization can be characterized as mature (see Figure 3.2).

The description of the CMM, above, implies an underlying
structure: specific practices have to be in place at each level above
Level 1 to indicate that the organization has achieved that level.

The specifics of that underlying structure were only hinted at
in the first version of the model [1–4], referred to as the ‘‘process
maturity model.’’ A clearly defined infrastructure (Figure 3.3) of ma-
turity level, Key Process Area (KPA), Key Practices, and Subprac-
tices was established in Version 1.1 of the CMM, released in Febru-
ary 1993 [5,6]. What was implied in the original version of the model
was now explicitly codified in the CMM: at each maturity level, there
are a number of KPAs. The KPAs are considered to be the essential

Figure 3.2 Characteristics of a mature process.

ISO 9000, CMM, and CSP Improvement 61

Figure 3.3 CMM organization.

building blocks for each level of the CMM. Each of these are com-
prised of a set of Key Practices, organized into five common features:
Commitment to Perform, Ability to Perform, Activities Performed,
Measurement and Analysis, and Verifying Implementation. For
many Key Practices, one or more Subpractices may exist.

To reach any level N above Level 1, the organization must have
implemented all the KPAs that are unique to that level, plus all the
KPAs that are specific to the N-1 level. Table 3.1 describes the KPAs
associated with each maturity level.

How is this framework used in practice? First, its structure pro-
vides a road map for any organization to achieve process improve-
ment. The Key Process Areas are organized in a logical sequence
that permits an organization to achieve process improvement in an
orderly manner. The description of the Key Practices within each
KPA identify for the organization what practices have to be in place
in order to have satisfied that KPA.

A second benefit is the software process assessment, which is
based on the CMM. It allows for an objective appraisal of the organi-
zation’s process infrastructure to determine the degree of process
capability achieved by the organization.

We will now turn to the road map and assessment aspects of
the CMM in more detail.

62 Chapter 3

T
ab

le
3.

1
K

ey
P

ro
ce

ss
A

re
as

L
ev

el
K

ey
pr

oc
es

s
ar

ea
s

D
es

cr
ip

ti
on

1
N

on
e

2
R

eq
u

ir
em

en
ts

m
an

ag
em

en
t

T
h

e
pr

oc
es

s
of

es
ta

bl
is

h
in

g,
m

ai
n

ta
in

in
g,

an
d

co
n

tr
ol

li
n

g
a

co
m

m
on

u
n

de
rs

ta
n

di
n

g
be

tw
ee

n
th

e
cu

st
om

er
an

d
th

e
de

ve
l-

op
er

s
as

to
th

e
sy

st
em

re
qu

ir
em

en
ts

af
fe

ct
in

g
th

e
so

ft
w

ar
e

to
be

de
ve

lo
pe

d
S

of
tw

ar
e

pr
oj

ec
t

pl
an

n
in

g
T

h
e

pr
oc

es
s

of
es

ti
m

at
in

g
th

e
si

ze
of

th
e

so
ft

w
ar

e
to

be
de

ve
l-

op
ed

an
d

es
ti

m
at

in
g

an
d

ob
ta

in
in

g
co

rr
es

po
n

di
n

g
re

so
u

rc
e

re
qu

ir
em

en
ts

in
te

rm
s

of
co

st
s,

sc
h

ed
u

le
,

an
d

st
af

fi
n

g
to

su
p-

po
rt

th
e

ef
fo

rt
S

of
tw

ar
e

pr
oj

ec
t

tr
ac

ki
n

g
an

d
ov

er
si

gh
t

T
h

e
pr

oc
es

s
of

tr
ac

ki
n

g
an

d
re

vi
ew

in
g

th
e

pr
oj

ec
t

ag
ai

n
st

th
e

es
ti

m
at

ed
re

so
u

rc
e

re
qu

ir
em

en
ts

,
an

d
ap

pl
yi

n
g

co
rr

ec
ti

ve
ac

-
ti

on
,a

s
n

ec
es

sa
ry

S
of

tw
ar

e
su

bc
on

tr
ac

t
m

an
ag

em
en

t
T

h
e

pr
oc

es
s

of
se

le
ct

in
g

a
su

bc
on

tr
ac

to
r,

es
ta

bl
is

h
in

g
a

co
m

m
it

-
m

en
t

to
pe

rf
or

m
,

an
d

su
rv

ei
ll

in
g

th
e

su
bc

on
tr

ac
to

r’
s

ac
ti

vi
-

ti
es

ag
ai

n
st

co
m

m
it

m
en

ts
S

of
tw

ar
e

co
n

fi
gu

ra
ti

on
m

an
ag

em
en

t
T

h
e

pr
oc

es
s

of
ap

pl
yi

n
g

id
en

ti
fi

ca
ti

on
sc

h
em

es
to

so
ft

w
ar

e
pr

od
u

ct
s,

co
n

tr
ol

li
n

g
ch

an
ge

s
to

th
e

pr
od

u
ct

s,
an

d
m

ai
n

-
ta

in
in

g
an

au
di

t
tr

ai
l

fo
r

al
l

ve
rs

io
n

s
an

d
ch

an
ge

s
S

of
tw

ar
e

qu
al

it
y

as
su

ra
n

ce
T

h
e

pr
oc

es
s

of
ve

ri
fy

in
g

th
at

pr
od

u
ct

s
an

d
pr

oc
es

se
s

co
m

pl
y

w
it

h
re

qu
ir

em
en

ts
an

d
w

or
k

st
an

da
rd

s
3

O
rg

an
iz

at
io

n
pr

oc
es

s
fo

cu
s

T
h

e
im

pl
em

en
ta

ti
on

of
a

re
so

u
rc

e
fo

r
m

ai
n

ta
in

in
g

co
gn

iz
an

ce
ov

er
th

e
or

ga
n

iz
at

io
n

’s
pr

oc
es

s,
in

cl
u

di
n

g
th

e
de

ve
lo

pm
en

t,
m

ai
n

te
n

an
ce

,
as

se
ss

m
en

t,
an

d
im

pr
ov

em
en

t
of

th
em

ISO 9000, CMM, and CSP Improvement 63

O
rg

an
iz

at
io

n
pr

oc
es

s
de

fi
n

it
io

n
T

h
e

ac
ti

vi
ty

of
in

st
it

u
ti

on
al

iz
in

g
th

e
pr

oc
es

s,
an

d
pr

ov
id

in
g

fo
r

th
e

as
se

ts
(f

or
ex

am
pl

e,
st

an
da

rd
s

an
d

pr
oc

ed
u

re
s)

to
im

pl
e-

m
en

t
it

T
ra

in
in

g
pr

og
ra

m
T

h
e

pr
ov

is
io

n
in

g
of

tr
ai

n
in

g
fo

r
th

e
or

ga
n

iz
at

io
n

to
pr

ov
id

e
cu

r-
re

n
t

an
d

fu
tu

re
n

ec
es

sa
ry

sk
il

l
se

ts
In

te
gr

at
ed

so
ft

w
ar

e
m

an
ag

em
en

t
T

h
e

in
te

gr
at

io
n

of
m

an
ag

em
en

t
an

d
so

ft
w

ar
e

en
gi

n
ee

ri
n

g
pr

ac
-

ti
ce

s
in

to
a

co
h

er
en

t
pr

oc
es

s
S

of
tw

ar
e

pr
od

u
ct

en
gi

n
ee

ri
n

g
T

h
e

u
ti

li
za

ti
on

of
th

e
de

fi
n

ed
pr

oc
es

s
in

th
e

ac
ti

vi
ty

of
de

ve
l-

op
in

g
an

d
m

ai
n

ta
in

in
g

th
e

so
ft

w
ar

e
In

te
rg

ro
u

p
co

or
di

n
at

io
n

T
h

e
in

te
gr

at
io

n
of

th
e

so
ft

w
ar

e
en

gi
n

ee
ri

n
g

or
ga

n
iz

at
io

n
’s

ac
-

ti
vi

ti
es

w
it

h
al

l
ot

h
er

pr
oj

ec
t

or
ga

n
iz

at
io

n
s

to
im

pl
em

en
t

sy
s-

te
m

le
ve

l
re

qu
ir

em
en

ts
an

d
ob

je
ct

iv
es

P
ee

r
re

vi
ew

s
T

h
e

im
pl

em
en

ta
ti

on
of

in
-p

ro
ce

ss
re

vi
ew

s
w

it
h

pe
er

s
of

th
e

de
-

ve
lo

pe
rs

to
re

m
ov

e
de

fe
ct

s
at

th
e

ea
rl

ie
st

po
ss

ib
le

st
ag

es
of

th
e

de
ve

lo
pm

en
t

pr
oc

es
s

4
Q

u
an

ti
ta

ti
ve

pr
oc

es
s

m
an

ag
em

en
t

T
h

e
es

ta
bl

is
h

m
en

t
of

a
da

ta
ba

se
of

pr
oc

es
s

m
ea

su
re

s
to

u
se

as
a

m
ea

n
s

of
m

ai
n

ta
in

in
g

pr
oc

es
s

ca
pa

bi
li

ty
S

of
tw

ar
e

qu
al

it
y

m
an

ag
em

en
t

T
h

e
qu

an
ti

ta
ti

ve
de

te
rm

in
at

io
n

of
pr

od
u

ct
qu

al
it

y
an

d
as

se
ss

-
m

en
t

of
th

es
e

va
lu

es
ag

ai
n

st
qu

al
it

y
go

al
s

5
D

ef
ec

t
pr

ev
en

ti
on

T
h

e
pr

oc
es

s
of

id
en

ti
fy

in
g

ca
u

se
s

of
de

fe
ct

s
an

d
pr

ev
en

ti
on

of
th

ei
r

oc
cu

rr
en

ce
T

ec
h

n
ol

og
y

ch
an

ge
m

an
ag

em
en

t
T

h
e

ev
al

u
at

io
n

of
ca

n
di

da
te

n
ew

te
ch

n
ol

og
ie

s
fo

r
su

it
ab

il
it

y
in

te
rm

s
of

pr
oc

es
s

im
pr

ov
em

en
t

P
ro

ce
ss

ch
an

ge
m

an
ag

em
en

t
T

h
e

pr
oc

es
s

of
re

du
ci

n
g

th
e

ch
ro

n
ic

le
ve

l
of

w
as

te

64 Chapter 3

3.2.1 Key Process Areas as Road Maps

As Figures 3.1 and 3.3 indicate, the maturity level indicates process
capability. The extent of that capability is indicated by the Key Pro-
cess Areas contained within each maturity level. Each KPA indi-
cates goals for the organization to achieve in improving their process
capability. For example, for the Software Project Planning KPA, the
goals are [6]:

• Software estimates are documented for use in planning and
tracking the software project

• Software project activities and commitments are planned
and documented

• Affected groups and individuals agree to their commitments
related to the software project

The goals then become the basis for the Key Practices associated
with the KPA. The goals are accomplished across all projects within
the affected organization by institutionalizing them, i.e., there is a
methodology established for accomplishing the Key Practices, which
is codified in the form of standard practices within the organization.
Naturally, as the organization matures, i.e., improves in their pro-
cess capability, the scope and extent of the standard practices will
expand.

The Key Practices are organized by Common Features, which
are common attributes of the KPAs. The Common Features and their
descriptions are indicated below:

Common feature Description

Commitment to This is an indicator of the organizations intent to per-
perform form the activities subsumed by the KPA. For this to

occur, there must be policies in existence requiring
the performance of these activities, plus senior man-
agement backing.

Ability to per- This is an indicator of the extent to which resources, in-
form frastructure, and training exist in the organization to

enable personnel to perform the necessary activities.
Activities per- This indicates the actual performance of the necessary

formed practices. These include the planning, performing,
and tracking of the activities, as well as any necessary
corrective actions to them.

ISO 9000, CMM, and CSP Improvement 65

Measurement This encompasses measurement of the process and anal-
and analysis ysis of the measurements to determine the effective-

ness of the Activities Performed.
Verifying imple- This is, effectively, a quality assurance activity, i.e.,

mentation audits and reviews to verify that the required activi-
ties are being performed in compliance with the estab-
lished process.

Within each of the Common Features, a set of Key Practices exist.
They are the activities that the organization performs within each
KPA. The Activities Performed Key Practices are the activities that
the organization actually performs in implementing the KPA. The
activities in the other four Common Features are in the nature of
providing an infrastructure in that:

• The Commitment to Perform Key Practices are the commit-
ments that have to be made in order to signify to the organi-
zation that the process is to be implemented,

• The Ability to Perform Key Practices define the assets and
resources that have to exist in order to implement the KPA,

• The Measurement and Analysis Key Practices are the mea-
surements that have to be performed in order to determine
how well the KPA is functioning, and

• The Verifying Implementation Key Practices are the verifi-
cations that are performed to verify that all the Key Prac-
tices in all the Common Features are being performed as
prescribed.

The Subpractices amplify the Key Practices. They describe
more specifics of what the organization must do to implement the
Key Practice. For instance, in the Software Quality Assurance KPA,
under the Ability to Perform Common Feature, Ability 2 (a Key Prac-
tice) states [6]:

Adequate resources and funding are provided for performing the
SQA activities.
The Subpractices for this Key Practice indicate what is required for
this ability to exist.

1. A manager is assigned specific responsibilities for per-
forming the project’s SQA activities.

66 Chapter 3

2. A senior manager, who is knowledgeable in the SQA role
and who has the authority to take appropriate oversight
actions, is designated to receive and act on software non-
compliance items. All managers in the SQA reporting chain
to the senior manager are knowledgeable in the SQA role,
responsibilities and authority.

3. Tools to support the SQA activities are made available.

In this manner, the road map for achieving process improve-
ment is provided. Level by level, KPA by KPA, a set of Key Practices
are defined, together with the pointers to indicate how the Key Prac-
tice is to be implemented. It is strongly recommended that the reader
who is seriously interested in process improvement study the mate-
rial in References 5 and 6. They provide the building blocks for a
sensible, orderly strategy for achieving process improvement.

3.2.2 The CMM as an Assessment Tool

Recall from Chapter 2 that one of the primary principles of process
change is the necessity to understand the current process first before
improvement can be effectively introduced. There is an old Chinese
proverb that says, ‘‘If you don’t know where your are going, any road
will do.’’ Watts Humphrey has a corollary to that which says, in es-
sence, ‘‘If you don’t know where you are, a road map won’t help.’’ An
assessment is a tool which enables organizations to understand the
current process—to determine where on the map the organization
is. It makes a great deal of sense to perform an assessment using
the same framework by which the organization bases its strategy
for process improvement. In other words, if an organization uses the
CMM as the model for process improvement, it should also make a
determination where the organization currently stands with respect
to that model.

The SEI methodology for determining where an organization
stands relative to the CMM, called the CMM-Based appraisal for
Internal Process Improvement (CBA-IPI), is a self-appraisal by an
organization that surveys a cross-section of that organization to de-
termine what development or maintenance practices are currently
employed. It is often vendor-assisted, utilizing a vendor trained in
the assessment methodology that has an authorization from the SEI

ISO 9000, CMM, and CSP Improvement 67

to lead assessments. Some of the larger software development orga-
nizations have a few of their own personnel authorized to lead as-
sessments. Under these circumstances, these organizations do not
need a vendor to lead the assessment.

Many organizations have the mistaken impression that the as-
sessment is nothing more than responding to a Maturity Question-
naire. While responses to a questionnaire will provide useful infor-
mation, it will not help the organization focus in on the most critical
issues facing it. The assessment methodology itself facilitates that.

To begin, an assessment clearly requires management commit-
ment. There is an investment of time and money on the part of the
organization. If management is ambivalent about implementing pro-
cess improvement, it is better not to begin an assessment at all. The
assessment process tends to raise hopes within the organization that
improvement will occur. If that is not to be, it then becomes more
demoralizing to the organization to undergo an assessment and have
no improvement occur than not to assess at all.

The assessment process, as discussed below, describes the way
that an assessment would be performed for a large software organi-
zation. For smaller organizations, the process is tailored to accom-
modate the size of the organization, thus requiring a smaller com-
mitment of personnel and time.

An assessment is performed by a team of vendor and client or-
ganization personnel. The assessment is led by the vendor, but the
team includes senior personnel from the client. Prior to the assess-
ment, planning for the assessment and training is performed by the
vendor. An assessment team is comprised of, generally, two vendor
participants, and three to six client participants. The training ses-
sion includes the features and significance of the CMM and the as-
sessment techniques. This enables the client team members to fully
perform all assessment activities necessary to distill out a set of
findings from the assessment process. At the conclusion of the train-
ing, planning for the actual on-site assessment period is then begun.
This includes planning the logistics of the assessment, the selection
of the projects that will be considered during the assessment, as well
as selection of the representatives from the functional areas who will
participate in group discussions. The projects are represented by
their project leaders, i.e., the individual who has responsibility for
meeting schedule and budget for the project, as well as the technical
adequacy of the delivered product. The functional area representa-

68 Chapter 3

tives (or FARs as they are referred to) are senior people (typically,
about 10 years of experience) who are performing non-management
roles in disciplines such as requirements analysis, design, test, con-
figuration management, etc. They should be people who are well re-
spected in the organization and are opinion leaders. They should not
be people who are dispensable within the organization or who stifle
discussion. The FARs include personnel from the projects undergo-
ing the appraisal as well as individuals from other projects.

An assessment will typically include three to five projects as
part of the assessment, although assessments have been conducted
where only one project was considered and as many as six were in-
cluded. It is preferable to select projects that are at various points
in the life cycle, e.g., one that has just started, one or more that are
in the middle of the life cycle (such as coding or unit-level testing),
and one that is nearing the end of the development effort. Mainte-
nance projects can also be selected. It is also good to have a mix of
developer experience from project to project, as well as a mix of
higher order languages used by the projects. The selection of the
projects and functional area representatives must be coordinated
with management in order to obtain management commitment for
their participation. Table 3.2 indicates typical commitment require-
ments for assessment participants. For smaller organizations, the
tailored process would require fewer hours from the team members,
but about the same number of hours for the rest; however, the

Table 3.2 Assessment Participant Commitment Requirements for a
Typical Level 1 Organization

Function No. of hours

Each assessment team member (except site coordinator) 112
Site coordinator 128
Assessment participants

managers 8
project leaders 8
functional area representatives 8

Senior management 8
Secretarial support 10
Other support 10

ISO 9000, CMM, and CSP Improvement 69

smaller organization will need to provide fewer project leaders and
functional area representatives.

A major principle underlying the assessment concerns confi-
dentiality. Strict confidentiality is observed. This is essential in or-
der to conduct an effective assessment. Much information is divulged
that could have an adverse effect on the careers of the participants,
if mishandled by managers or supervisors who feel threatened by the
process. Consequently, findings are presented as composite findings
that pertain to the organization as a whole. There is no attribution
to specific projects or individual workers. The assessment team and
participants agree to keep all information confidential. Some data
from the assessment is sent to the SEI to allow the SEI to perform
statistical analysis; however, the SEI is also bound by the confiden-
tiality requirement. They only reveal composite results, with no at-
tribution to specific organizations, individuals, or projects. Individ-
ual organizations, on the other hand, are free to publicly discuss the
results of the assessment, if they choose. Even in doing this, there
is never any reference to individuals or specific projects, since this
was never revealed to the organization to begin with.

About a week or so before the on-site period begins, an assess-
ment participants briefing is held. The purpose of that meeting is to
apprise the participants of the assessment, the purpose of it, the
principles underlying it, the roles they will perform, and the commit-
ment expected of them. Prior to this meeting, the client organiza-
tion’s management should have coordinated with the participants
to ensure their availability and willingness to participate in the as-
sessment. At the conclusion of the briefing, the project leaders are
administered a Maturity Questionnaire. The team members then
meet (after the questionnaires have been completed) to review the
answers and determine specific issues to discuss with the project
leaders.

The actual assessment is a highly intense activity that occurs
over an extended period that can last from five to ten days, de-
pending on the size of the organization and the CMM level at which
the organization believes it is functioning. It includes not only the
team members from the client, but, as indicated before, also requires
limited participation by project leaders from selected projects, mid-
dle managers, and selected senior technical specialists. Prior to the
start of the so-called On-Site Period, the team will begin the assess-

70 Chapter 3

ment process by performing an evaluation of pertinent documenta-
tion. The purpose of this evaluation is to determine the existence of:

• Policies requiring the performance of practices specified by
the CMM

• Standards and procedures
• Work products required by the standards and procedures,

such as Software Development Plans, requirements specifi-
cations, design descriptions, test plans, etc.

• Reports of audits conducted to determine compliance with
specified policies and processes

These artifacts are evidence that the organization has established
a process, is committed to it, is providing the necessary resources,
and is following it. The above list is only an example of the types of
documents that this part of the assessment covers. As the document
evaluation progresses, data consolidation is performed, and some
tentative findings begin to emerge.

On the first day of the so-called On-Site Period, the proceedings
are sometimes kicked off by a charge to the participants from the
senior manager, which is effectively a pep talk. This is done to indi-
cate to the participants that senior management is backing the as-
sessment and the whole concept of process improvement. This is
then followed by discussions with the project leaders. Based on the
analysis of the responses to the questionnaire, open-ended questions
are asked of the project leaders to obtain a clearer picture of the
practices they employ on their projects. The purpose of this session
is to obtain a sense of what practices are employed, from the perspec-
tive of the project leaders, and to what extent they are institutional-
ized across the organization.

The project leader sessions are then followed by open-ended
discussion sessions with the FARs. These sessions are organized in
reverse life cycle order with personnel whose major activities occur
during discrete phases of the development cycle. For instance, the
first group of FARs is typically those who are associated with release
(for example, configuration management personnel) and quality as-
surance for the deliverable product. The next group is typically the
group responsible for software integration and test. They are fol-
lowed by a group responsible for coding and unit-level testing, and
the final group is responsible for requirements and design. These
people are invited to discuss anything they want to about how the

ISO 9000, CMM, and CSP Improvement 71

software development process is conducted. They can talk about the
good, as well as the bad. No specific questions are asked of them,
except to obtain clarification of remarks made. The content of these
sessions is sometimes augmented through asking the FARs some of
the same questions that were asked of the Project Leaders. This is
done to explore specific areas that are in question. Through this tech-
nique, many of the problems the organization is experiencing are
brought to the surface. Since the FARs attend in reverse life cycle
order, the problems they discuss are generally the problems that
they feel are dumped in their laps because of the process problems
that have occurred in the previous phases of the activity. It is also
possible to begin to see if any commonality of problems are brought
up between the FARs and the project leaders.

In addition to the discussion with the FARs, a discussion is also
held with the middle managers. This is done for three purposes: (1)
obtain the process perspective of the middle managers, (2) obtain
confirmation of the process and organizational problems raised by
the FARs, and (3) obtain buy-in for the assessment and process im-
provement efforts from the middle managers. Sometimes, an inter-
view will be scheduled with the senior manager, as well. We often
find that the senior manager feels left out of the assessment process.
This interview helps provide valuable information and make the
senior manager feel part of the process.

During the days that the interviews and discussions are held,
data consolidation continues. Additional tentative conclusions are
reached. Sometimes, the need to look at additional documentation
emerges to fill in some informational gaps. The documentation is
identified, obtained, and reviewed in order to supplement the infor-
mation that has already been obtained.

Following the conclusion of the discussion/interview sessions,
the assessment team meets to develop a preliminary set of findings.
These are organized into a draft set of final findings, which identifies
specific findings based on the CMM, as well as pertinent non-CMM
findings, such as organizational issues inhibiting the ability to im-
plement effective process improvement. The findings are typically
organized by Key Process Area, indicating strengths, weaknesses,
and sometimes the consequences of the weaknesses. A dry run of
the draft final findings is presented, in turn, to the assessment team,
FARs, project leaders, and middle managers. Feedback is accepted
from each group. If there is any strong disagreement with any of the

72 Chapter 3

findings, that finding is eliminated. The intent is to obtain consensus
among all the participants on the findings, and strong disagreement
negates consensus. The final findings briefing to senior management
is drafted based on the feedback received.

At the conclusion of the On-Site Period, a presentation of find-
ings is then made to senior management. Senior management atten-
dance at the briefing is essential, again, to indicate their support of
the assessment and process improvement.

Following the On-Site Period, a set of recommendations are
drawn up, and then an action plan is developed to implement the
recommendations. These, too, are presented to senior management.
The development of the recommendations and the action plan may
sometimes be facilitated by the vendor. The vendor is also available
to assist client companies in implementing their action plans.

A more detailed discussion of the formulation of the action plan
is found in the next section.

3.3 IMPLEMENTING SOFTWARE PROCESS IMPROVEMENT

Implementing software process improvement involves the develop-
ment of an overall strategy. Process improvement does not occur
overnight, and can not be implemented on a ‘‘fad of the week’’ basis.
If it is, it is doomed to failure. Process improvement requires pa-
tience on the part of all parties involved: management, the develop-
ers, and the stakeholders. Many small steps are involved in process
improvement. The first, and most crucial step, is committing to pro-
cess change. There has to be an acknowledgment by all parties that
process improvement is required in order to remain competitive. Ac-
companying that acknowledgment must be a willingness on the part
of management to commit the necessary resources to accomplish ra-
tional process change.

3.3.1 Developing a Long-Range Action Plan for
Process Improvement

In Chapter 2, we spoke of the improvement process, and the fact
that the process transitions through several steps. The first step is
problem recognition. This may be accomplished by performing an
assessment, as described above. For purposes of our discussion, we

ISO 9000, CMM, and CSP Improvement 73

will utilize the CMM-based appraisal methodology as the basis for
obtaining a baseline from which to begin the process improvement
effort. An assessment of the current state of the practice leads to a
set of findings and a corresponding set of recommendations for pro-
cess improvement. These become the basis for selecting process im-
provement projects (the second step) and developing the action plan
for process improvement (see Figure 3.4).

The strategy for implementing the recommendations should be
addressed in a plan that accomplishes the actions as a series of small
projects. The plan should identify the resources (including person-
nel, capital outlays, and software and hardware tools) needed to exe-
cute the projects, the schedule, associated tasks, project responsibili-
ties, and measures that will be utilized to indicate success or failure.
At the top level, we have the overall plan, which identifies and priori-
tizes the individual projects. Rough, order-of-magnitude costs for ex-
ecuting these projects are estimated, together with a schedule that
shows the phasing of each of these projects. Once the long-range plan
has been approved, detailed implementation plans for each of the
approved projects can then be developed. These plans would contain
a more refined cost estimate and schedule for performing each of the
projects. Figure 3.5 illustrates the relationships.

The long-range action plan should be one that is commensurate
with the overall business objectives of the organization. An approach

Figure 3.4 Software process assessment final report.

74 Chapter 3

Figure 3.5 Action planning.

for developing such a plan has been developed by Frank Koch*. A
description of the approach follows. Figure 3.6 illustrates the
process.

In developing this plan, a team is organized consisting of the
personnel who participated in the assessment, as well as any other
personnel who have a vested interest in the outcome of the planning

* Reproduced and adapted by permission of Frank Koch, Process Strategies,
Inc., Box 104, Walpole, ME, 04573-0104.

Figure 3.6 The long range action planning process.

ISO 9000, CMM, and CSP Improvement 75

effort. This team is the focal point for the planning process. In Chap-
ter 2, we discussed the concept of the Quality Council. We pointed
out that sometimes the role of the Quality Council is split between
senior management and the Software Engineering Process Group
(SEPG). Members of that Quality Council (the SEPG) will typically
participate in this team. As we will show a little later, senior man-
agement also has an important role to perform. This is in keeping
with the principles discussed in Chapter 2.

To expedite undertaking the various analyses that need to be
performed and to achieve agreement on priorities, the planning pro-
cess is typically conducted in a workshop mode, led by a facilitator.

3.3.1.1 Develop Project Proposals
The strategic direction for process improvement is set based on the
recognition of an existing problem within the organization (see Sec-
tion 2.2.1). The problem could be loss of market share or degraded
quality in delivered software products. Some general underlying
causes for the problem can be determined, by comparison against a
standard benchmark. An assessment can be conducted to compare
the organization’s performance against this benchmark. An example
of one such benchmark is the CMM. The description of the long-
range planning methodology that follows is based on using the re-
sults of a CMM-based appraisal, as well as other considerations. The
starting point is the assessment, to determine the current state of
the practice. (The conduct of the assessment is discussed in Section
3.2.2, above). If the organization desires to improve productivity and
product quality, the CMM and the assessment findings help to set
the strategic direction. It identifies the Key Process Areas (KPAs)
and associated key practices that must be implemented to reach that
goal. Near-term priorities for accomplishing the assessment’s recom-
mendations should be based on the most critical process issues cur-
rently facing the organization; however, the priorities must be con-
sistent with the findings of the assessment. A Level 1 organization,
for instance, should not normally be addressing Level 3 issues in
their action plan (unless one of them was a particular critical issue
for the organization), because there are Level 2 issues that need to
be addressed first. Even within the Level 2 issues, some may be a
more burning issue for the organization than others.

While the CMM is one factor that helps to set the strategic

76 Chapter 3

direction, other factors enter into the picture as well: alignment with
the organization’s business goals and risk. We will look at that fur-
ther in the next section.

Based on the findings of the assessment, a set of recommended
solutions to the process issues identified in the assessment report
are proposed. This begins the process of project selection (see Section
2.2.2). Typically, numerous projects are proposed. Through discus-
sions and nominal group techniques, the list is winnowed down to
a manageable size: something on the order of a dozen. All of these
projects cannot be implemented at once. Some sort of prioritization
must occur. How this occurs is described in the next section.

3.3.1.2 Analyze Impact
In arriving at the highest priority improvement projects, three fac-
tors must be considered: impact, risk, and benefits. In Section 2.2.2,
we discussed the process of project selection. This section describes
a specific technique for continuing the process for arriving at a selec-
tion of specific process improvement projects for implementation.

When we look at impact, we are looking at the impact of the
projects on the overall strategic business objectives of the organiza-
tion. We also look at the number of KPAs affected by the project,
since an action to be implemented can impact more than one KPA.
For example, suppose there is a recommendation to implement con-
figuration management to accomplish the baselining of require-
ments documentation and instituting change control over them.
Suppose there is another recommendation concerning subcontractor
management that addresses having a solidified set of requirements
for the prospective subcontractors before the subcontract is let. A
single project to implement a well-thought out change management
process can have impact on the business objectives, as well as imple-
menting process improvement based on both of these KPAs.

In evaluating the business impact, the beginning point is the
statement of the organization’s business objectives. These are then
characterized by a set of critical success factors that help to deter-
mine if these objectives are being met. These should be expressed
in terms that relate to the data processing or software development
organization. It is best to limit this list to a maximum of about seven
critical success factors (CSFs). Generally, this list, as it relates to
the data processing or software development organization, is devel-

ISO 9000, CMM, and CSP Improvement 77

oped in a joint session consisting of the cognizant senior manage-
ment and the members of the planning team. If the business objec-
tives have already been clearly and publicly stated by management
in some documented form, the focus is then on the development of
the CSFs. Sometimes, we find that the business objectives have not
been articulated for the organization, and the first order of business
then becomes to state those. The intent of the activity is to reach
consensus on the CSFs affecting the software development organiza-
tion, and to establish weights for each of the factors. It is also the
intent to enlist senior management participation in this activity,
thus establishing their commitment to the process improvement ac-
tivity. Recall from Chapter 2 that senior management active involve-
ment is essential for institutionalizing process improvement (see
Section 2.2.8).

A number of techniques exist to attain a consensus within a
group on the CSFs and their weights. Techniques such as Australian
balloting may be used quite effectively. (A discussion of these tech-
niques is outside of the scope of this book). Each of the projects is
then scored against these CSFs, in terms of how well they will sup-
port achieving them. For each project, a normalized score is calcu-
lated, which is later used for rank-ordering the projects. Figure 3.7
illustrates the process.

Figure 3.7 Performing the impact analysis based on business objectives.

78 Chapter 3

A second impact analysis is then performed, in which each of
the projects is evaluated against their impact on achieving the next
level of capability on the CMM. A simpler weighting is used here,
based on a high-low scale. Recall that some projects can impact more
than one KPA. Those KPAs that are associated with the next level
of maturity receive the highest weighting, while those that area as-
sociated with higher levels of maturity receive lower weighting. The
objective is to get to the next higher level of maturity. Accordingly, as
a first cut, all KPAs at the next level of maturity receive the identical
(higher) rating, while the KPAs at the next level of maturity receive
an identical lower rating. The project is then scored against each of
the affected KPAs, and a project normalized score is calculated, as
previously described. As a refinement, a second cut at the impact
analysis may be performed. At the next level of maturity, some KPAs
may be more important than others, based on the assessment find-
ings. The issues that are presented as assessment findings have
been identified by consensus, and reflect the most pressing issues
for the organization. Accordingly, the KPAs associated with those
issues will receive higher weighting. As before, weightings are estab-
lished in a consensus gathering session, again using techniques such
as Australian balloting. Figure 3.8 illustrates the process. In per-
forming this analysis, keep in mind that the cumulative sum of the
weighted scores for a given KPA across all projects cannot exceed

Figure 3.8 Performing the impact analysis based on key process areas.

ISO 9000, CMM, and CSP Improvement 79

100%. The significance of a score of 100% is that the KPA is totally
achieved. A score in excess of 100 means that the KPA has been
more than achieved, which is not logically possible.

3.3.1.3 Analyze Risk
Risk refers to the difficulty associated with implementing the pro-
posed plan. Is implementing the project a gamble, or are the results
reasonably predictable? In determining this, a number of factors are
considered, grouped into three categories: project size, structural is-
sues, and technology (see Figure 3.9).

Project size, as a risk category, refers to the magnitude of the
project in terms of staff-hours to implement it. In general, the
smaller the number of staff-hours to perform the project, the lesser
the risk.

The category of structural issues can include a number of fac-
tors, such as:

• The number of functional groups within the organization
involved in the project

• The complexity of it
• The experience in the affected process domain of the people

assigned to develop the solution. Are the people assigned to
develop the solution novices in this area?

• The experience in the affected process domain of the people
who will ultimately use it. In other words, will a great deal
of training be required to familiarize the users with the
practices involved?

Figure 3.9 Project risk categories.

80 Chapter 3

• The anticipated resistance of the organization to change in
this area

The category of technology issues can includes factors, such as:

• The maturity of the proposed process within the software
engineering discipline. Is the project attempting to imple-
ment a cutting edge solution?

• The availability of training in using the new methodology
• The complexity of tools or other aids that will be acquired

to implement the solution
• The maturity of the tools and other aids. Is the organization

going to acquire Version 1.0 of the tool (which is always a
risky proposition)?

• Experience in the use of the tools or aids. How experienced
are the users with the tools or aids used to support this pro-
cess?

The risk evaluation is performed in a manner similar to that
of the impact analysis. In the case of risk, however, a tailored set of
risk factors is defined. The list of risk factors shown here are a ge-
neric list. The risk factors shown here may be not all be applicable
for some organizations. Other, additional factors may be. The list
needs to be refined for each organization to be applicable to that
organization’s specific environment.

For each project, a score is determined for each of the risk fac-
tors, based on guidelines (see Table 3.3), and a normalized score is
calculated, based on the sum of the weighted scores for each of the
factors. Note that there is one major difference. In the case of the
impact analysis, the greater the impact, the higher the score. In
the case of risk, the higher the risk, the lower the rating. Projects
with the lowest risk receive the highest score.

3.3.1.4 Rank Proposed Projects
Once the impact and risk analyses have been performed, the projects
are ranked according to total score. The general equation for calcu-
lating the total score is as follows:

Total Score � (Weight1)(Business Objective Impact)
� (Weight2)(KPA Impact) � (Weight3)(Risk)

ISO 9000, CMM, and CSP Improvement 81

Table 3.3 Examples of Risk Factor Scoring Guidelines

Risk factor Parameters Score

Project size Less than 160 staff-hours 10
160–400 staff-hours 5
More than 400 staff-hours 1

No. of functional groups 1–2 groups 10
3–4 groups 5
More than four groups 1

Process maturity Vintage 10
Middle-aged 5
Bleeding edge 1

Process developer experience with Expert 10
this type of process Intermediate 5

Beginner 1
Complexity of tools for supporting Simple 10

process Moderate 5
Very 1

Resistance to change Minimal 10
Somewhat 5
High 1

where the impacts and the risk for each project are the normalized
scores developed in the manner described in the paragraphs above,
and weights 1, 2, and 3 are determined by consensus. To illustrate
how the rankings are developed, some organizations may consider
all three items of equal importance. Under those circumstances, the
equation would reduce to:

Total Score � (Business Objective Impact)
� (KPA Impact) � (Risk)

Another organization might consider the business objective impact
three times more important than KPA impact, and risk twice as im-
portant as KPA impact. Under those circumstances, the equation
would reduce to:

Total Score � 3(Business Objective Impact)
� (KPA Impact) � 2(Risk)

82 Chapter 3

Each proposed project is thus scored, in turn.
A tentative ranking is now established on the basis of the scores

recorded for each project, with the project achieving the highest
score ranking the highest. A further refinement of the ranking is
then made after the conclusion of the next step.

A cost-benefit analysis (for example, return on investment) is
not likely to be performed by organizations to support the ranking
process. As a rule, Level 1 and 2 organizations will be unable to accu-
rately forecast tangible benefits to be achieved from the improve-
ment projects. These organizations typically will not have collected
the data and metrics to support such projections. Such analyses are
feasible for Level 4 and 5 organizations, and may likely be achievable
for Level 3 organizations, or organizations close to Level 3.

3.3.1.5 Estimate Cost and Schedule
After the proposals are ranked, the next step is estimating the sched-
ule and cost for each project by itself. In this step, the intent is not
to develop fine-grained costs or schedules, but to get an overall rough
order-of-magnitude estimate, in order to get an general idea of what
the commitments would be for each project. Knowing the staffing
and financial resources available for the near-term (for example, the
remainder of the fiscal year), the team can then identify the candi-
date projects for the near-term plan, based on priority and available
resources. Figure 3.10 illustrates the methodology. Considering the

Figure 3.10 Defining the candidate projects.

ISO 9000, CMM, and CSP Improvement 83

fact that the projects have been prioritized, and, in all likelihood,
there will be interdependencies between them, the next step is to
develop an overall strategic schedule for all the projects which re-
flects their priorities and interdependencies. Figure 3.11 is an exam-
ple of such a schedule. It is an example of a schedule for calendar
year 1994, showing that the projects overlap two fiscal years, and
the output from Project E becomes an input for Project B, which, as
the plan indicates, would be performed in calendar year 1995.
Also, the schedule indicates that Projects B and F become inputs to
Project D. Consequently, the priority of the projects can change as
a result of the interdependencies between projects. Projects A, F,
and B may now become the projects recommended for the first year.

Another consideration is impact and visibility. For low Level 1
organizations, management may not have much credibility where
it relates to process improvement. Past experience may prove that
management ‘‘talks the talk,’’ but doesn’t ‘‘walk the walk.’’ Consider-
ing that, a short term project having low risk, high visibility, and
some non-trivial benefits, may be a better candidate for a high prior-
ity, initial project, even though it may have had a much lower
ranking.

3.3.1.6 Obtain Management Commitment
The next step is to formalize the plan and present it to management
to obtain their concurrence and commitment. Earlier, we spoke of

Figure 3.11 Scheduling the projects.

84 Chapter 3

the necessity for senior management involvement in order to institu-
tionalize process improvement (see also Section 2.2.8). We spoke of
this in relation to their participation in the generation of the critical
success factors. Once again, their participation is necessary, this
time in approving the strategic plan and authorizing the initiation
of the first process improvement projects.

The overall plan for process improvement is prepared and pre-
sented to the steering committee, which includes senior manage-
ment. We spoke of this in Section 2.1.4, when we described the func-
tion of the Quality Council. Figure 3.12 illustrates the typical
content of the plan. There would be an introductory section in the
plan that would explain the purpose of the plan, describe the meth-
odology utilized in developing the content, and briefly summarize
the findings and recommendations contained in the assessment re-
port. (It would refer the reader back to the assessment report for
more detail concerning the findings and recommendations). The
project descriptions are each contained in a one- or two-page sum-
mary (see Figure 3.12) that identify the project, provide a brief de-
scription of it, describe the expected benefits, identify the personnel
who will be responsible for performing the project, identify the costs
and associated resources, and define the duration of the project. In
the description of the project will be an identification of how the pro-
cess will change. It will identify the methods that will be investi-

Figure 3.12 Example of a process improvement proposal.

ISO 9000, CMM, and CSP Improvement 85

gated, address implementation in a trial application, identify the ef-
fort required to establish a set of trial standards and procedures,
training of the personnel in the trial application in the new methods,
incorporation of feedback into the methods and trial standards and
procedures, and re-trial, if necessary. The estimated costs will ac-
count for these activities. This plan, after review and approval by
the steering committee, is signed by them, signifying their concur-
rence and commitment to providing the personnel and other re-
sources. Once the strategic plan has been approved, the detailed
plans for the individual projects are then developed.

In Section 2.1.4, we also spoke of the SEPG and its relation to
the Quality Council. The SEPG is the focal point for implementation
of process improvement and for managing change within the organi-
zation. Typically, it will be the responsibility of the SEPG to coordi-
nate and manage the implementation of the action plan. They should
track each project against its planned schedule, funding, and task
performance. Most project plans will require a pilot application of
the change in the process. Once the trial application has shown that
the new methods will work, the SEPG then becomes responsible for
communicating this to the organization as a whole, providing educa-
tion and training to the organization at large in the new methods,
and promulgating the standards and procedures necessary to imple-
ment them. Senior management is also involved in this process, as
well. Senior management, acting as a steering committee or Quality
Council, meets regularly with the SEPG to discuss progress and sta-
tus. Senior management also authorizes the official roll out of the
changes in the process. After a pilot application shows the efficacy
of the change, and feedback from the pilot application has been in-
corporated into the standards, procedures, and training materials,
as appropriate, the SEPG makes a report to the steering committee.
The steering committee then decides if the change should be rolled
out, and, if it should, provides the authorization. The steering com-
mittee also periodically reviews the status of the action plan and
decides on which improvement projects to initiate next.

3.3.2 Work Environment Factors Affecting Process
Improvement Plan Implementation

In developing the plan, it is important to remember that there likely
are barriers to successful implementation of process improvement.

86 Chapter 3

If these barriers did not exist, it is quite likely that process improve-
ment efforts would have already been further advanced. The plan
must take these barriers into account, and address the mitigation
of their effect.

The next several sections discuss some of these barriers.

3.3.2.1 Facilities
The physical environment in which employees work can have a ma-
jor impact on productivity. Studies show that the amount of floor
space allocated to an employee can have significant effect on em-
ployee productivity, thus moderating the effect of other actions
taken to improve productivity through process improvement. Capers
Jones [10] cites a study by De Marco that showed that the productiv-
ity of people who worked in offices having 78 square feet or more
were in the high quartile. On the other hand, those who had 44
square feet or less were in the low quartile. An analysis conducted
by TRW on their company-funded Software Productivity Project [11]
showed that the personnel productivity on this project was 42%
higher than that predicted for such a project. These personnel had
been supplied with private offices having 90 to 100 square feet, floor-
to-ceiling walls, carpeting, sound-proofing, and chairs that were er-
gonomically designed. They were provided with adequate desk area,
lighting, and storage. Each office had a terminal or a work station,
which was networked to computers, file servers, and printers.
Roughly 8% of the productivity gain was attributed to the comfort
of the work environment.

In addition to the floor space, personnel require adequate shelf
space for reference material, and storing other materials (even per-
sonal items) considered important by the developers. A minimum of
20 feet of shelf space is recommended [12].

Noise level also adversely affects productivity. Noise can be es-
pecially bad in facilities where partitions do not extend to the ceiling,
floors are not carpeted, and/or several people share offices. If an of-
fice is shared, people dropping in to visit with an office-mate can be
very distracting—especially if the conversation is not work-related.
Offices with low partitions, if the office area has not been properly
sound-proofed, are susceptible to all sorts of ambient noise (people
walking down the corridor, hallway conversations, etc.). Even with
good sound-proofing, low partitions can still allow in a fair amount

ISO 9000, CMM, and CSP Improvement 87

of ambient noise. The positive effects on productivity and quality of
providing personnel with the latest and greatest in tools, techniques,
methodologies, and training can still be blunted by failing to provide
an agreeable work environment.

There are other facility/environmental factors to consider, as
well. These include, among other things, the availability of [12]:

• Adequate lighting. Numerous studies indicate that fluores-
cent lighting lowers productivity.

• Free parking close to the facility.
• Availability of food service and vending machines. One site

with which we are familiar provides pretzels, cookies, and
potato chips of various flavors free to all work areas. Be-
cause of this and other environmental considerations, this
company achieves significant output from their employees,
as well as a great deal of creativity.

• Wall space for notes, 10 square feet minimum. This can be
in the form of cork boards, chalkboards, or whiteboards. The
availability of Post-its (or equivalent ‘‘stickies’’) are a
great help in note-keeping and replacing ‘‘to-do’’ files.

3.3.2.2 Software Tools
Software tools can be either a godsend or a hindrance, depending on
if they are used, the context in which they are used, and how they
are used. We sometimes find companies who do not readily acquire
software tools. They are reluctant to expend the capital funds neces-
sary to acquire such tools. To compound matters, these and other
companies, when they acquire tools, are often reticent to contract
for the associated training. The non-acquisition of training is treated
as a cost-savings. In actuality, it is costing these organizations more
by not acquiring the necessary training. Tools do not teach the user
how to use them: trainers do. Without the training, the tools either
go unused, or are used inefficiently. Any productivity and quality
gains that could have been realized by the use of these tools are
quickly negated.

Tools, and especially computer-aided software engineering
(CASE) environments, hold much promise, yet, results from the use
of CASE have been a mixed bag. Studies performed on the utilization
of CASE tools indicate that after one year, 70% of the CASE tool
acquired have become shelfware—almost totally unused by the ac-

88 Chapter 3

quiring organization. Another 25% are used by only one group
within the organization, and the remaining 5% are widely used, but
not to capacity [13].

Why does this situation exist? A number of reasons have been
proposed, many of which revolve on the issue of organizational readi-
ness for CASE. For example, Howard Rubin has defined a measure
of organizational readiness that is based on a matching of eight orga-
nizational attributes with eight comparable tool attributes. To illus-
trate, one of the organizational attributes is ‘‘Applicability,’’ i.e., the
dominant work focus of the organization (for instance, new develop-
ment, maintenance). The comparable tool attribute is ‘‘Work Spec-
trum,’’ which reflects the extent to which the tool supports the orga-
nization’s dominant work focus. A footprint of the eight attributes
of the organization’s readiness is plotted on a Kiviat diagram, as is
the footprint of the tool’s attributes. Without going into a great deal
about the methodology, suffice it to say that there has to be a consid-
erable match-up of the two footprints for the tool to be accepted and
widely used by the organization [13].

In the CMM, too, the concept of organizational readiness comes
into play. Until an organization has defined, established, and codi-
fied the methodology it uses for developing software, CASE tools will
be of little or no value. The tools will provide more capability than
the organization can assimilate or use effectively. Accordingly, orga-
nizations functioning at very low levels of process maturity are not
able to realize significant benefits from CASE. Consequently, organi-
zations who see tools as a panacea for their productivity and quality
problems without addressing the basic process problems first will
find that tools are an obstacle, rather than an aid, and will have
wasted considerable sums of money.

3.3.2.3 Personnel Resources
In Japan, when people enter the work force, they typically stay at
one company for their entire working career. Layoffs are uncommon.
(Although both of these conditions are starting to change, this is still
the general rule). There is a strong feeling for the group, and people
work together for the good of the organization. Maintaining motiva-
tion, and having an adequate, experienced staff is much less of a
problem than it is in the Western World.

In the Western World, people want to be rewarded for their

ISO 9000, CMM, and CSP Improvement 89

individual contributions. If they feel that they are not, they feel free
to leave their employer and go to work for another. Management,
on the other hand, wants to have a free hand in reducing the work
force as economic conditions change. They want to be able, when
they see fit, to shift personnel from project to project to balance costs,
and to sometimes replace experienced personnel with less experi-
enced personnel. (Note that management can sometimes accomplish
the same economic results by process improvement, rather than by
arbitrary staff reductions or sudden changes in staffing).

Some personnel like to have training. Others resist it. Some
like training in disciplines related to their current jobs. Others look
at training as a way of getting a better job somewhere else. Manage-
ment views of training are sometimes unclear. Training is often one
of the first things cut out of the budget when companies fall on hard
times. The need to reduce the cost of doing business when economic
downturns occur is certainly understandable; however, many com-
panies practice cut and slash without taking a careful look at their
business practices. This was alluded to in the previous paragraph.
Improving business processes can often effect significant cost-sav-
ings without the necessity for cutting personnel, or drastically reduc-
ing the training programs which can result in improved staff perfor-
mance. If cutting and slashing is perceived as indiscriminate, this
can severely overtax the surviving staff, and cause serious morale
problems.

How companies use their training budgets varies considerably.
In some companies, training is sparse. Other companies provide a
great deal of training. European, Japanese, and especially Indian
companies provide a great deal of training—far more than that pro-
vided by companies in the U.S. Indian companies spend as much as
5% of gross revenues each year on training [15]. Some companies
succeed in providing for both individual growth, as well as growth
of the organization. Others provide only for growth of the organiza-
tion. Still others succeed in providing the right kinds of training, but
at the wrong time: either too far before training in the discipline is
needed, or too late—well after the people who needed it have limped
along without it.

Intelligent utilization of personnel resources are essential for
process improvement. Process improvement requires motivated per-
sonnel if the process improvement effort is to be seen as something
other than the fad of the week. Experienced, skilled personnel must

90 Chapter 3

be employed in the planning and implementation of the process im-
provement efforts. Training in the new skills and disciplines to be
implemented must be provided. Management must be seen as being
behind the effort (more on that in the next section).

Process improvement planning must take these factors into ac-
count.

3.3.2.4 Management Policies
Process improvement starts at the top. Management commitment
to process improvement must exist, or no improvement will occur.
Management must be in for the long haul. There has to be a recogni-
tion that process improvement takes time, and that changes will not
occur overnight. If management is unable to recognize that fact, or
is not willing to stay the course during the time that it takes for
process improvement to take hold, it is better not to begin.

Management must provide the resources, establish the priori-
ties, and provide encouragement for implementing process improve-
ment. All are essential ingredients. This fact has been recognized
by the SEI in the structure of the CMM. Each KPA is comprised of
5 Common Features, as described in Section 3.2.1. These are Com-
mitment to Perform, Ability to Perform, Activities Performed, Mea-
surement and Analysis, and Verifying Implementation. The Key
Practices for each KPA are organized by the Common Features. Two
Common Features, Commitment to Perform and Ability to Perform,
deal with the topic of management commitment to process improve-
ment. Commitment to Perform enumerates Key Practices that the
organization must implement to indicate management’s commit-
ment to good process. They include such things as promulgating the
necessary policies within the organization requiring it to perform
the good practices encompassed by the KPA, and specifying manage-
ment responsibility for seeing to it that the policy is consistently
implemented. Ability to Perform deals with providing the necessary
resources to implement the practices, such as funding and training.

In general, if these activities are not properly managed for pro-
cess improvement, they can discourage the improvement efforts.
Management must be willing to make capital outlays to pay for the
necessary staff to oversee the process improvement efforts and to
acquire the software tools and hardware associated with the process
improvement projects. This does not mean that management should

ISO 9000, CMM, and CSP Improvement 91

sign a blank check. Reasonable budgets should be established, and
the projects should be required by management to live within their
budgets and schedules. Priorities should be established to take care
of contingencies. By setting reasonable priorities based on sound
process improvement objectives, looking for ‘‘silver bullets’’ can be
avoided. Too often, management squanders precious financial re-
sources on software or hardware that are looked upon as quick solu-
tions.

The foregoing assumes, of course, that management has a gen-
uine commitment to quality. This means that schedule is not the
primary motivating factor in the organization. In too many organiza-
tions, quality assurance, configuration management, and test
(among other good practices) fall by the wayside when projects fall
behind. Process improvement efforts will fail, and personnel will be
demotivated if management is perceived as paying lip service to
quality. If schedule is overriding, quality cannot be perceived as im-
portant.

3.3 MANAGING THE IMPROVEMENT PROJECTS

The improvement projects should be managed no differently than
any other software project. As part of the initial action plan develop-
ment, rough order of magnitude estimates are defined for each proj-
ect. Prior to the start of each project, a detailed plan for that project
should be drawn up. A detailed definition of the tasks to be per-
formed should be established. Based on the task definitions, detailed
estimates of the labor hours to perform the tasks should be made,
together with the schedules for their performance. If possible, iden-
tify the specific individuals who should perform these tasks, since it
will be essential to obtain their management’s commitment for them
to support the process improvement projects. They should be individ-
uals who have specific expertise in the affected disciplines, as well
as being respected within the organization. This is necessary to facil-
itate acceptance of the proposed changes within the organization.
Establish detailed cost estimates for each task, including non-recur-
ring costs. This could include the cost for tools, outside consultants,
training, books, etc., as well as the costs for printing draft proce-
dures, standards, training materials, and the like for the pilot proj-
ects.

92 Chapter 3

In Section 2.2.5, we spoke of the structure of the process im-
provement projects. We addressed the need to characterize the ex-
isting process, collect measures of the current process, and analyze
the data. In addition, we talked of the need for measures to deter-
mine if the process changes provide significant benefit. By doing this,
we provide data essential for proper management of the improve-
ment projects. Consequently, in developing the plans for the proj-
ects, the detailed tasks should address (among other things) the fol-
lowing:

• What does the current process look like? This may involve
developing a model of the current process. For instance, if
the process improvement project is geared toward improv-
ing the system requirements definition process, it may be
very useful to develop a model of the process currently used
to develop these requirements.

• What are the inputs to and outputs from the current pro-
cess? How do they relate to the quality issue?

• What measures do we have or can we generate to determine
the quality of the inputs and outputs?

• How are we going to collect and analyze the data?
• What changes do we need to make to the process?
• What measures do we have to collect in order to determine

if the change is beneficial?

The plan should also include provisions for pilot applications
of the process change, as described previously. This involves the fol-
lowing:

• Identifying and selecting an on-going or new development
or maintenance project in which to conduct a pilot applica-
tion of the change

• Producing draft standards and/or procedures to define how
the process change is to be implemented in practice

• Developing and implementing draft training materials for
use in training the practitioners in the required practices

• Utilizing the measures we spoke of in the previous para-
graph to evaluate the efficacy of the change.

• Applying feedback and lessons learned from the pilot appli-
cation for overhauling or fine-tuning the draft materials

ISO 9000, CMM, and CSP Improvement 93

(standards, procedures, training materials) before rollout to
the organization as a whole

• Releasing the changed process to the organization-at-large,
using the revised standards, procedures, and training mate-
rials

The plan, when completed, should be submitted to the SEPG
for review and comment. Feedback from the SEPG review should be
incorporated into the plan. When the SEPG is satisfied with the
plan’s content, they will then submit it to the senior management
steering committee for their review and approval (see Section 2.2.8).
The steering committee, when they find the plan acceptable, should
provide the specific resources required. This includes identifiable
budget, as well as personnel assignments. The steering committee
should be the focal point for obtaining the commitment of lower level
managers to provide the specific individuals identified in the plan
to support the project. If the specified individual can’t be allocated
to the project, then a suitable substitute should be negotiated be-
tween the steering committee and the designated project leader.

The project leader should manage the performance against the
approved plan. This includes managing the expenditure of funds,
tracking the schedule, and tracking the performance of the tasks.
Where variances exist, they should be investigated, and if corrective
action is necessary, it should be implemented. The commitment of
the personnel should also be monitored. Where commitments of indi-
viduals to the project are not being kept, that problem must be
worked up through the chain through the SEPG to the steering com-
mittee.

Successful process improvement projects must follow the same
good project management practices that any competent project man-
ager would follow in managing a software development project.

3.4 SUMMARY

In this chapter, we elaborated on the principles discussed in Chapter
2, and described specific applications of these principles to software
process improvement. We described the CMM and the application
of it to the performance of software process assessments. These yield
findings which become the input for the activity of strategic planning

94 Chapter 3

for software process improvement. A methodology was described for
performing strategic planning for process improvement, one that has
been used extensively and has been quite successful.

To conclude this chapter, we discussed a number of issues that
can affect the implementation of change management. This was fol-
lowed by a discussion on managing the process improvement proj-
ects.

In the next chapter, we will begin the discussion on applying
measurement to the process improvement activities. These mea-
sures are used to establish baselines of current performance, and to
measure actual improvement.

REFERENCES

1. Humphrey, W. S. ‘‘Characterizing the Software Process: A Maturity
Framework,’’ CMU/SEI-87-TR-11 (ESD-TR-87-112), June 1987.

2. Humphrey, W. S. ‘‘Characterizing the Software Process,’’ IEEE Soft-
ware, March 1988, pp. 73–79.

3. Humphrey, W. S. ‘‘Managing the Software Process,’’ New York; Addi-
son-Wesley, 1989.

4. Humphrey, W. S. and Sweet, W. L. ‘‘A Method for Assessing the Soft-
ware Engineering Capability of Contractors,’’ CMU/SEI-87-TR-23
(ESD-TR-87-186), September 1987.

5. Paulk, M. C., Curtis, W., Chrissis, M. B., and Weber, C. V. ‘‘Capability
Maturity Model for Software, Version 1.1,’’ CMU/SEI-93-TR-24 (ESD-
TR-93-177), February 1993.

6. Paulk, M. C., Weber, C. V., Garcia, S. M., Chrissis, M. B., and Bush,
M. ‘‘Key Practices of the Capability Maturity Model, Version 1.1,’’
CMU/SEI-93-TR-25 (ESD-TR-91-178), February 1993.

7. Humphrey, W. S., Snyder, T. R., and Willis, R. R. ‘‘Software Process
Improvement at Hughes Aircraft,’’ IEEE Software, July 1991, pp. 11–
23.

8. Dion, R. ‘‘Process Improvement and the Corporate Balance Sheet,’’
IEEE Software, July 1993, pp. 28–35.

9. Daskalantonakis, M. K., Yacobellis, R. H., and Basili, V. R. ‘‘A Method
for Assessing Software Measurement Technology,’’ Quality Engi-
neering, 3(I), 27–40 (1990–1991).

10. Interview with T. Capers Jones. CASE Strategies, Vol. II, No. 9, Sep-
tember 1990.

11. Putnam, Lawrence H. and Myers, Ware. Measures for Excellence; Reli-

ISO 9000, CMM, and CSP Improvement 95

able Software On Time, Within Budget, Englewood Cliffs, NJ: Yourdon
Press, 1992.

12. Bliss, Robert. ‘‘The Other SEE,’’ CrossTalk, January 1994.
13. Source: Jerry Weinberg, cited in ‘‘The ‘True’ Cost of ‘CASE’,’’ Pre-

sented by Howard A. Rubin, Ph.D., CASE World, Los Angeles, CA,
March 20, 1990.

14. Howard Rubin, Using ‘‘READINESS’’ to Guide CASE Implementation,
‘‘CASE Trends,’’ November/December 1990 and January/February
1991.

15. Quann, Eileen. ‘‘Training—Your Competitive Edge in the ’90s,’’ Soft-
ware Technology Conference, Salt Lake City, April 1994.

4
Software Measurements Programs:
Strategies and Implementation Issues

4.1 INTRODUCTION

Measurement is an integral part of the process management strate-
gies. Chapter 3 discussed how the SEI Capability Maturity Model
and the ISO 9000 standards emphasize the role of process in de-
termining the quality of the products. In this chapter we focus on
measurement of software development and maintenance processes.
The topic of process measurement will be introduced in the context
of organization objectives and management strategies. One or more
management strategies may be used in an organization, but for pro-
cess measurement to be a relevant activity, the net result should be
a focus on increasing the quality and responsiveness of the organiza-
tion.

Measurement ties several disciplines together, creating an en-
vironment where inputs, processes, and outputs are controlled, and
improved. Measurement is a basic need of any management activity.
This chapter focuses on software measurement programs in the con-
text of the management and control of software quality. Specifically
we will cover measurement of software development and mainte-
nance processes.

During the planning phase of a new project, measurement in-
formation from prior projects may be used to estimate parameters
of the new project. During the execution of the project, process and
resource measures can be collected and analyzed against such esti-
mates. As products are created, product measures are collected and

97

98 Chapter 4

analyzed, yielding product metrics. The number of open bugs, per
subsystem, is an example of a product metric.

The answer to the question, ‘‘Why Measure?,’’ involves several
other questions such as:

• Are the software processes more productive today than last
year? Less productive? Why?

• Are the software processes delivering higher quality prod-
ucts today than last year? Lower quality? Why?

• Are our customers more satisfied with our software pro-
cesses today than they were last year? Less satisfied? Why?

• Are the software processes more reliable this year than last
year? Less? Why?

• Do the software processes cost more today than last year?
Less? Why?

Note that if one removes the words software processes from each of
the questions above and insert any other business process, the ques-
tions would still apply to organizations in general. Software pro-
cesses should be treated the same as other business processes. Au-
thors such as W. Edwards Deming, J.M. Juran, and Phil Crosby
have made process modeling, measurements, and the subsequent
improvements key items in improving business performance. If we
apply the same continuous improvement methodology to our soft-
ware processes, the need to measure those processes becomes crit-
ical.

4.2 DEFINITIONS

The definitions for measure and metric are not consistent through-
out literature and industry publications. Often the terms measure,
indicator and metric are used synonymously. In this section, we de-
fine these terms as they are used in this book.

Measure: As a noun, a measure is defined as a number that
assigns values on a scale. Examples may include number of errors,
lines of code, or work effort. As a verb, measure means to ascertain
or appraise by comparing to a standard.

Metric: There is no single universal definition of metrics. In the
context of this book, a metric is a combination of two or more mea-
sures or attributes. Examples include (1) fault density, (2) Flesch

Software Measurements Programs 99

readability index and (3) man-months. In evaluating a metric we
can consider several characteristics. In particular, we will want the
metric to be:

• Understandable—It must relate to some quality or charac-
teristics that the practitioner finds meaningful and simple
to understand.

• Field tested—It must have a proven record by other indus-
trial organizations or proven on local pilot effort.

• Economical—It should be easily extracted from existing
product and processes.

• High leverage—It should help identify alternatives that
have high impact on cost, schedule, and quality.

• Timely—It should be available within a suitable time frame
to meet the objectives of the measurement.

Measurement: Measurement is defined as the activity of com-
puting and reporting metrics values. Comprehensive measurement
activities lead to operational control that include:

• Setting of standards or goals for relevant metrics
• Computation of relevant metrics in a timely manner
• Comparison of reported metrics value with appropriate

standards or goals
• Evaluation of difference to determine required action
• Periodical review of standards, metrics definition, list of re-

quired actions

4.3 MEASURES FOR SOFTWARE PROCESS CONTROL
AND IMPROVEMENT

As was stated in the previous section, we measure to understand
and improve processes. There are several ways to determine what
to measure in an organization. The most successful way to determine
what to measure is to tie the measurement program to the organiza-
tional goals and objectives.

Victor Basili of the University of Maryland developed the
‘‘Goal-Question-Metric’’ method for tying the measurements to the
goals (Figure 4.1).

In Basili’s method, you first identify the organizational goals.

100 Chapter 4

Figure 4.1 Goal-question-metric model.

This can be done by reviewing documents and by interviewing the
organization’s leaders. An example goal might be to ‘‘reduce time to
market by 25 percent.’’

Once the goals are documented, a series of questions may
be formulated for each goal. Example questions are ‘‘What is our
current time to market?’’ and ‘‘What is our competitor’s time to
market?’’

The questions then need to be analyzed to determine if a quan-
titative means exists to answer them. Time to market, for example,
is the elapsed time, or duration, to bring a new product through the
design, development, and deployment steps. Time to market analy-
sis often must include management processes, which may also in-
clude an analysis of performance and quality.

Once the metrics are decided upon, the underlying measures
must be selected and collected.

The Goal-Question-Metric is one approach. Measurement pro-
grams for software processes come in all shapes and sizes. Programs
should be tailored to meet organizational needs. However, a series
of base measures must be used throughout any improvement effort.
The IEEE Standards 1045, Standard for Software Productivity Met-
rics [1], and 982.1, Standard Dictionary of Measures to Produce Reli-

Software Measurements Programs 101

able Software [2], provide a starting point for defining the base mea-
sures. Using an external standard may be useful, because it allows
comparison across multiple organizations and reduces the time re-
quired to deploy a measurement program.

The measures discussed in this section form the basis of a soft-
ware measurement program. These measures are grouped in six cat-
egories:

• Size
• Defects
• Effort
• Duration
• Cost
• Customer satisfaction

4.3.1 Size

To measure our software processes, we need a measure of the size of
the process deliverable. This provides us the capability to investigate
measures such as organizational productivity or software quality.
For instance, common measures of productivity are in terms of lines
of code per day or function points per day. Quality is often cited in
terms of defects per 1000 lines of source code (KSLOC) or defects
per function point.

In determining ‘‘size,’’ we need a measure that is standardized
across projects and independent of the methodology, technology, or
development tools used to create the software. Commonly cited mea-
sures of size include pages of documentation, number of objects, lines
of code, or function points. Lines of code are typically measured with-
out counting embedded comments in the source code and without
special purpose code used only for testing and debugging. The SEI
guidelines [3] for measuring lines of code is one standard that can
be used to ensure that consistent definitions are used within the
organization. Function points are a dimensionless number that is
representative of the extent of the functionality of the software,
hence, a size measure. Guidelines for counting function points are
provided in publications available from the International Function
Points User Group (IFPUG). Function points also enable consistent
size definitions within an organization, independent of the program-
ming language used for any project.

102 Chapter 4

4.3.2 Defects

Organizations need to categorize and quantify defects in software
processes. This enables the organization to develop measures of
product quality, essential for determining how well the processes
are working for the organization. Each organization needs to define
defects clearly for its own processes. IEEE Standard 1044, Software
Quality Measures [4], defines a framework for measuring defects.

4.3.3 Effort

The amount of work effort involved in developing and supporting
software needs to be measured. Collecting these measures is helpful
for estimation of project cost and staffing. Effort is typically mea-
sured in man-hours, man-months or man-years. The tracking effort
is always related to a process or a part of a process. For example,
we can track effort by life cycle phase or task.

4.3.4 Duration

One of the key measures is the calendar time required to complete
a project, phase, or task. Collecting these measures and maintaining
them in a database are helpful for assisting in estimation of project
schedules. This time is usually expressed as elapsed time in days,
and may initially be calculated as comparing the difference between
the start date and the finish date. Later, duration may take into
account such things as vacations, nonworked days, etc., to reflect the
true elapsed time between a project’s start and finish dates. Dura-
tion is tied to effort and may be correlated to other measures, such
as software size.

4.3.5 Cost

Organizations need to measure the overall costs of developing and
supporting software processes. Collecting these measures and main-
taining them in a database are helpful for assisting in estimation of
project cost. Each organization must have a clear definition of what
will be included in this measure. The two major cost drivers in soft-
ware development organization are the human and computer re-
source utilization. Cost is tied to effort and may be correlated to
other measures, such as software size.

Software Measurements Programs 103

4.3.6 Customer Satisfaction

Software organizations need to focus on the needs of their customers.
By measuring what is important to customers (for example, response
time to process a query), software organizations can target specific
areas of their processes for improvement.

4.4 EFFECTIVENESS OF PROCESS MEASUREMENT
PROGRAMS

In this section, we will describe the attributes of an effective process
measurement program and highlight positive and negative impact
factors.

4.4.1 Attributes

The effectiveness of a software measurement program is not contin-
gent on the existence of all of the attributes included in this section.
However, a software process measurement program that lacks many
of these attributes has a high risk of failure. The attributes were
determined by combining experience gained by the authors and the
writings of general management consultants, such as Deming and
Juran, as well as software process improvement specialists like
Watts Humphrey, who was the Director of the Software Process Pro-
gram at the SEI. These attributes are:

Measurement is viewed as mission critical. Measurement is
seen as a mission-critical function. The program is not seen as over-
head, and it does not require continuous justification.

The measurement program is aligned with business objectives.
The program is aligned with business objectives and helps in the
determination of how well the business objectives are being met. The
value and benefits of measurement are understood by clients and
other corporate departments.

The measurement program is supported by management. Sup-
port for the program by all levels of management is demonstrated
in the following ways:

• An empowered champion or sponsor leads the implementa-
tion and long-term support of the measurement program

• Staff who are responsible for the development and support

104 Chapter 4

of the measurement program are selected based on their
qualifications, not by their availability

• The importance of the program in the organization is dem-
onstrated by the proactive participation of senior level per-
sonnel

• Management uses the measurement information to plan,
control, and improve the processes and products of the orga-
nization

• The focus is on quantifiable process improvement, not on
measurement

Measurement is linked to decision making. Appropriate mea-
surement information is distributed to and used by all levels of man-
agement, as well as by team members. Measurement information is
used to manage and estimate. Measurement information is used as
part of the decision-making process with customers.

Action plans are derived from reported measurements. There
are action plans for process improvement derived from measure-
ment. Measurement provides evidence of the existence and magni-
tude of process improvements. This includes cost savings, increased
quality, improved productivity, etc.

The measurement program is integrated into the development
effort. The measurement program is integrated into the software
development and support processes. This means the measurement
tasks are included as part of the standard software development pro-
cess. Where possible, software tools are acquired and incorporated
into the development, test, and/or maintenance environments to fa-
cilitate the process of collecting the raw data. Raw data is collected,
to the maximum extent possible, as a byproduct of the developer’s
(or maintainer’s) daily activities, without requiring any added effort
on their part.

The measures are standardized and documented. Accurate,
repeatable, consistent data is maintained across all reporting enti-
ties (for example, effort tracking and size tracking). Consistent defi-
nitions of the measures are used across the organization to facilitate
uniform understanding of the data. A loss or a change in personnel
does not affect the quality and validity of data. Adherence to stan-
dards is audited. Continuous process improvement and the use of
measurement data are included in an ongoing education program.

The program uses a balanced set of metrics. A balanced set of

Software Measurements Programs 105

related metrics is used to gain a global and complete perspective.
There is no reliance on a single metric for decision making. There
is an appreciation of the value of several compatible metrics. The
inherent risk to decision making from reliance on a single metric is
recognized, and no single metric is viewed as a panacea.

The program is integrated with organizational initiatives.
The measurement program is integrated with initiatives such as
continuous process improvement or total quality management.

The program is part of the culture. Measurement is part of
the corporate culture. Continuous improvement is demonstrated
through measurement. The program remains sound despite turn-
over of personnel (at all levels), and it evolves to reflect changes in
the business.

Measurement focuses on processes—not people. Measurement
information is used to improve software processes, not to measure
individual performance. The program measures the process, not the
people.* It supports continuous process improvement.

4.4.2 Impact Factors

There are a number of factors that have been found by organizations
to influence the effectiveness of their measurement programs. Some
have a positive impact, and others have a negative one.

4.4.2.1 Positive Impact Factors
Organizations have found that some factors, when properly applied,
exert a positive impact on their measurement programs. The factors
are grouped according to:

• Business value
• Awareness
• Training

* Productivity may sometimes be mistakenly thought of as a people mea-
sure; however, productivity is really measuring the process in terms of its
capability (in terms such as lines of code per day or some such similar
measure) across the organization, not with respect to one individual devel-
oper. We look at process improvement with respect to its ability to improve
productivity across the board for the entire organization, not individuals.

106 Chapter 4

4.4.2.1.1 Business Value The factors related to business
value include:

• Integrating the use of metrics into all levels of management
decision making

• Demonstrating to line management the business value of
measurement by providing management information

• Defining objectives for the measurement program
• Ensuring the appropriate use and presentation of the data

(measure processes, not people)
• Communicating results promptly and appropriately
• Establishing realistic management expectations for mea-

surement

4.4.2.1.2 Awareness The factors related to awareness in-
clude:

• Establishing strong public and private sponsorship at all
levels, including high-level, committed corporate sponsor-
ship

• Maintaining an awareness of the time required to conduct
and implement measurement

4.4.2.1.3 Training The factors related to training include:

• Developing the measurement program with the same
staffing consideration and disciplines as any other highly
visible, high-risk project (phased approach, adequate re-
sources, objectives, realistic time lines, etc.)

• Communicating the purpose, benefits, and vision for mea-
surement to all levels of the organization, including all lev-
els of management

• Including training and education on function points (if used
by the organization), metrics, and data analysis for all mea-
surement participants

4.4.2.2 Negative Impact Factors
The major factors that, when improperly applied, organizations have
found to negatively impact their measurement programs fall in the
categories of management and communication.

Software Measurements Programs 107

4.4.2.2.1 Management Factors related to management in-
clude:

• Lack of ongoing commitment or support from management
(for example, underfunded, inadequately and inappropri-
ately staffed, or lack of accountability)

• A view of measurement as a finite project
• Unclear goals and objectives for measurement
• Misuse of measurement data for individual performance re-

views

4.4.2.2.2 Communication Factors related to communica-
tion include:

• Lack of communication of results and measurement infor-
mation to the organization

• Negligence in responding to questions and concerns from
staff about measurement

• Unmanaged expectations (for example, unrealistic time
frames for implementing a measurement program)

• An expectation that measurement will automatically cause
change

4.5 MEASUREMENT PROGRAMS IMPLEMENTATION STEPS

A measurement program does not magically appear. It must be im-
plemented in stages. Table 4.1 lists phases and activities for imple-
menting a measurement program. This is a suggested implementa-
tion. Each activity in the table is explained on the following
pages.

This ‘‘project-based’’ approach to establishing a software mea-
surement program ensures that appropriate up front planning is
done before measurement begins. However, the exact order of the
activities may vary from company to company. For example, some
organizations need to establish sponsorship before defining goals.
Once the ‘‘project’’ of implementing a measurement program is com-
pleted, the measurement program should be actively used to support
management decision making. The most important steps in estab-
lishing a measurement program are to define the goals and objec-
tives.

108 Chapter 4

Table 4.1 Measurement Program Implementation

Section Phase Activities

4.5.1 Plan/evaluate Definition of goals, objectives, and bene-
fits

Establishment of sponsorship
Communication and promotion of mea-

surement
Identification of roles and responsibilites

4.5.2 Analyze Audience analysis & target metrics iden-
tification

Definition of software measures
Definition of the data collection, analy-

sis, and data storage approach
4.5.3 Implement/measure Education

Reporting and publishing results
4.5.4 Improve Managing expectations

Managing with metrics

It is critical that the defined goals of your measurement pro-
gram directly apply to your organization’s goals. This is the basis
for determining what you will measure, what metrics you will use,
and what data you need to collect based on the capabilities and ma-
turity of your organization. The key is to look at the strategic and
tactical goals of your organization and determine what you need to
measure to provide management with information to track their
progress towards their goals.

4.5.1 Plan/Evaluate Phase

4.5.1.1 Reasons for Implementation
One reason for measurement program failure is because the organi-
zation has a poor understanding of why they even began a measure-
ment program. Measurement is viewed as a panacea, and measure-
ment is performed for measurement’s sake—not because they serve
some specific purpose. A successful program must begin with a clear
statement of purpose. The following list identifies some of the possi-

Software Measurements Programs 109

ble reasons for implementing a software measurement program in
your organization:

• Establish a baseline from which to determine trends
• Quantify how much was delivered in terms the client under-

stands
• Help in estimating and planning projects
• Compare the effectiveness and efficiency of current pro-

cesses, tools, and techniques
• Identify and proliferate best practices
• Identify and implement changes that will result in produc-

tivity, quality, and cost improvements
• Establish an ongoing program for continuous improvement
• Quantitatively prove the success of improvement initiatives
• Establish better communication with customers
• Manage budgets for software development more effectively

4.5.1.2 Questions to Help Identify Goals
A measurement program will help in determining if the organiza-
tion’s goals are being met. To help determine if the strategic and
tactical goals of your organization are being met, questions such as
the following may need to be asked:

• How fast can we deliver reliable software to our customers?
Does it satisfy their requirements?

• Can we efficiently estimate the development cost and sched-
ule? Are the estimates accurate?

• What can we do to improve our systems-development life
cycle and shorten the cycle time?

• What is the quality of the software we deliver? Has it im-
proved with the introduction of new tools or techniques?

• How much are we spending to support existing software?
Why does one system cost more than another to support?

• Which systems should be re-engineered or replaced? When?
• Should we buy or build new software systems?
• Are we becoming more effective and efficient at software de-

velopment? Why? Why not?
• How can we better leverage our information technology?
• Has our investment in a particular technology increased our

productivity?
• Where are our funds being expended?

110 Chapter 4

If you cannot answer (with hard facts) the questions that your orga-
nization is asking, your organization needs a software measurement
program.

The key selling point for a software measurement program is
to provide a direct link between measurement data and the achieve-
ment of management goals. All levels of management need to under-
stand how the data will provide them with facts that will help them
manage and reach strategic and tactical goals. It is very important to
obtain sponsorship and buy-in for your measurement program from
managers in your organization who can financially commit to ensure
its ongoing support and funding. You can establish buy-in by an-
swering What is in it for me? for the entire organization.

4.5.1.3 Identification of Sponsors
An important step is to identify appropriate sponsors for the pro-
gram. Because frequent initial reactions to software measurement
include apprehension and fear, upper management support is key.
Consider including upper and middle managers, project leaders, and
clients as sponsors.

Sponsorship has to be won. Usually it takes time to establish
solid sponsorship. You can start with limited sponsorship and then
build on it as the program progresses. To receive continual support
and to expand that support throughout your organization, you must
sell the software measurement program to others. The following list
includes some tactics that have been used to help establish buy-in
for measurement:

• Provide education for the sponsors on measurement pro-
grams, software metrics, and methods to effectively imple-
ment change

• Use testimonials and experts to build credibility
• Identify issues in software development and maintenance,

and show how a measurement program can help
• Address concerns directly and realistically. The following

concerns may be addressed:
How much resource time will it take to implement mea-
surement?
How much will it cost?
Will individuals be measured?

Software Measurements Programs 111

Can we automate this process? (Automated counting, re-
porting, etc.)
How can we maintain consistency?
Where can we get help?
How long will it be before we will see results?
What is in it for me?
How will measurement benefit me?

Even with all of the prerequisites in place (clear sustainable objec-
tives for measuring, phased-in plan, audience analysis), your mea-
surement program will face a number of obstacles before becoming
a part of your organization.

Several approaches can be used to sell software measurement
to the rest of the organization:

• Present the program as an integral component to quality
and productivity improvement efforts. Demonstrate that
the measurement program allows you to:

Track the changes in quality or performance, or both, re-
sulting from improvements
Identify improvement opportunities

• Present the benefits of the metrics program to each level of
staff, describing in their own terms what is in it for them.
These levels may include the professional staff, project man-
agers, and senior management.

• Spread the word about measurement benefits as often and
through as many channels as possible. There must be visible
and demonstrable benefits, not just hype or industry claims.
(For example, informal measurement discussions can occur
around a coffee station.)

• Monitor the use of the data to ensure that it is used appro-
priately.

• Provide testimonials and concrete examples of measure-
ment in practice, both within and outside of your organiza-
tion. Note that internal successes and testimonials from re-
spected colleagues are often worth much more than external
examples

• Provide ongoing presentations at all levels.
• Address current user concerns. For example, if users are

complaining about the amount of money spent on mainte-

112 Chapter 4

nance, show comparisons of various applications normal-
ized by application size.

• Address concerns and rumors about measurement candidly.
Measurement fears (often from systems developers and ana-
lysts) are best dispelled by honestly addressing why mea-
surement is needed and what benefits (for example, better
estimates) will accrue from its use.

• Depersonalize measurement (that is, present data at a
higher level of aggregation).

4.5.1.4 Identification of Roles and Responsibilities
When you establish a software measurement program, the roles and
responsibilities of participating individuals need to be defined and
communicated. The following questions need to be answered for your
organization:

• Who will decide what, how, and when to collect the measure-
ment information?

• Who will be responsible for collecting the measurement in-
formation?

• How will the data be collected? What standards (internal or
external) will be used?

• At which phases will the data be collected? Where will it be
stored?

• Who will ensure consistency of data reporting and collec-
tion?

• Who will input and maintain the measurement informa-
tion?

• Who will report measurement results? When?
• What will be reported to each level of management?
• Who will interpret and apply the measurement results?
• Who is responsible for training?
• Who will maintain an active interest in the measurement

program to ensure full use of the measurement information?
• Who will evaluate measurement results and improve the

measurement program?
• Who will ensure adequate funding support?

Generally, organizations with a software measurement program
have established a central measurement coordinator or coordina-

Software Measurements Programs 113

tors. For example, where an organization has established a Software
Engineering Process Group (SEPG), some of these functions would
be accomplished by it. Other functions may be performed by SQA.
Still others may be performed by the software engineering organiza-
tion. No matter how it is organized, the following responsibilities
need to be enumerated and assigned.

• Review measurements for accuracy, completeness, and con-
sistency

• Provide function point counting and other measurement as-
sistance as necessary, if the organization uses function
points as the basis for size estimation

• Distribute and support software measurement reporting
• Consult with management on the analysis, interpretation

and application of the measurement information
• Maintain measurement data
• Collect and maintain attribute information for measure-

ment analysis
• Maintain internal counting standards, requirements, and

documentation for all collected measures
• Facilitate communication across the organization regarding

the measurement program
• Establish and maintain software measurement standards

and processes
• Provide education, training, and mentoring on all aspects

of software measurement

Depending on the size and scope of your measurement program, the
responsibilities listed below need to be assigned to individuals in
your organization (as applicable).

• Schedule and coordinate the software measurements for de-
velopment and/or enhancement projects

• Track all support changes for support reviews to keep base-
line of measurements current

• Submit measurement information to the coordinator
• Schedule new applications to be counted after implementa-

tion
• Ensure adherence to measurement policies, measurement

standards, and requirements

114 Chapter 4

• Analyze, interpret, and apply resulting measurement infor-
mation to improve development and support performance

4.5.2 Analysis Phase

4.5.2.1 Analysis of Audience and Identification
of Target Metrics

Once objectives have been set and sponsorship established, one of
the next steps is to conduct an audience analysis and identify the
target metrics. This activity should be conducted in conjunction with
identifying roles and responsibilities discussed in the previous sec-
tion. Work done here impacts the answers to the questions listed in
the roles and responsibilities section.

Conduct an audience analysis so that you will be sure to mea-
sure and track the appropriate data that will help your organization
reach its goals. The first step is to determine which groups of people
will require and use the measurement data (for example, project
managers, the CIO, and directors). Anticipate needs to identify con-
cerns and objectives, and work with management to recommend a
relevant set of metrics.

In applying these steps you should:

• Select the most important requirements that will meet the
goals of your measurement program

• Set priorities and requirements for each audience
• Select only a few metrics to implement initially
• Select realistic and measurable metrics by starting small

and then building on success
• Align audience needs with the overall objectives of measure-

ment

In identifying metrics you should not:

• Choose metrics first and then create needs
• Try to satisfy all audiences and all requirements at once

4.5.2.2 Definition of Software Metrics
After you have conducted an audience analysis and identified your
initial set of metrics, you need to clearly define all the measures that

Software Measurements Programs 115

will make up the metrics. Identifying your metrics and defining your
measures are important keys to assuring your data are collected con-
sistently. You may wish to start from an existing set of standards.
Enforcing the definitions and standards is just as important for
maintaining consistency.

You need to define all the component measures that will make
up the metrics so that the reason they were captured, their meaning,
and their usage can be clearly communicated to measurement par-
ticipants and management. If your measures are not clearly defined
and understood by all individuals in your organization, your mea-
surement data could be collected inconsistently and lose its reliabil-
ity and usefulness

For example, if your goal is to determine whether development
productivity is improving, you need to collect data on development
hours, project type, and project size. If you do not specifically define
what is included in development hours, some developers may report
overtime hours while others may not. Some may include analysis
hours before beginning the project while others may not. It is obvious
that if the hours are not captured consistently, the productivity rate
(a metric combining work effort and size) will not be valid. Further-
more, if you do not also specifically identify the type of project for
which the data was collected, for example, command and control ap-
plication vs. information system, you may wind up comparing apples
to oranges. Some applications are more complex by their nature and
require more hours of development time, given a specific application
size in terms of lines of code.

There are many different approaches from which you may
choose when first starting a software measurement program. Possi-
ble options include:

• Establishing a baseline of all applications in your organiza-
tion as a function of application domain

• Running a measurement pilot project for one application
• Measuring activity against all installed applications
• Tracking only development projects
• Tracking defects, cost, and customer satisfaction
• Tracking only size and effort

The approach you select should be based on your own organizational
goals and constraints for implementing a measurement program.

116 Chapter 4

The following types of measures are often collected as part of an
initial software measurement program:

• Lines of code
• Work effort
• Defects
• Cost
• Customer satisfaction

How you track and collect measurement data depends on what you
decide to collect. If you choose to start big and collect a large amount
of data for the whole organization, you might want to consider in-
vesting in automated data collection tools and repositories. In addi-
tion to the types of data, the data collection approach you choose
will depend on the scope of the measurement program you want to
establish. You need to establish your standards and processes for
data collection, storage, and analysis to ensure that the data will be
usable and consistently collected and reported.

Whether you build or buy automated measurement tools that
will store and analyze your data depends on your requirements.
Even if you start small and decide to store the information in a
spreadsheet, you will quickly amass a large amount of data and
will need to determine an electronic storage medium for collected
data.

4.5.3 Implement/Measure Phase

4.5.3.1 Organizing for Just-in-Time Training
and Education Processes

Education and training has to be provided to those persons who will
be involved in and affected by the measurement program. Such an
effort should be geared toward providing these individuals an under-
standing of:

• Why measurement is necessary
• How it affects them
• How the information can help them manage
• Their responsibilities in the context of the measurement

program

Software Measurements Programs 117

Different types of training or presentations are required to address
the needs of different levels of personnel, depending on the depth of
their involvement. For example, managers may require an executive
summary presentation on how measurement applies to them, while
system experts may require in-depth training on data collection and
measurement.

Particularly effective training incorporates realistic examples
from the workplace of the participants. Complementary to formal
training sessions, a follow up and support effort should be designed
so that the participants ‘‘stay on course’’ and apply the skills they
acquired during training. Monthly or quarterly follow up meetings
where problems, success stories and difficulties in implementation
are presented have also proved very effective.

When planning training and education programs one should
always keep in mind that learning is enhanced by positive reinforce-
ments and mostly FUN! Using graphical user interfaces in conjunc-
tion with good case studies and simulations has helped achieve these
objectives.

4.5.3.2 Reporting and Publishing Results
Whether you produce manual reports, develop your own reporting
system, or purchase a software measurement reporting package, you
will need to report and publish the results. The following list in-
cludes suggested guidelines for publishing results:

• Make sure the people viewing the reports understand what
the reports reveal so that the information is not misinter-
preted and used to support poor decisions

• Include an analysis and explanation with the reported data
(that is, mix graphs with text)

• Produce key statistics relevant to and usable by your audi-
ence

• Provide relevant and actionable reports to managers
• Use the appropriate graph to present your data (for exam-

ple, pie charts do not present trends well)
• Keep graphs simple (that is, do not present multiple metrics

on a single graph)
• Report source data in appendices

118 Chapter 4

4.5.4 Improve Phase

4.5.4.1 Managing Expectations
If the life span of your projects ranges from a few months to a year
or more, consider how long it will take to collect enough data points
to make your data statistically significant. Also, it will take a great
deal of time to define the measures, set the standards for data collec-
tion, and train the individuals. Since it will take a great deal of time
before the measurement program will reach its long-term goals, one
should also concentrate on short-term goals and let all involved
know when they can expect to see more immediate results. The short
term goals derive from the long-term goals. Keep your long-term
goals in mind while developing short-term goals. For example, over
the first few months of a new metrics program, improvement in esti-
mating accuracy could be a more immediate goal than shortening
the development cycle. Once you are able to collect work effort and
project size, you can begin to supplement this data with available
industry-data delivery rates to help you in project estimating and
shortening the development cycle. The amount of time and money
that must be invested in measurement before payback is realized
varies from organization to organization. Many organizations have
found that long-term payback may not be realized until two years
or more after the program is implemented.

4.5.4.2 Managing with Metrics
The staff responsible for a metrics program is not usually responsi-
ble for making management decisions. A measurement program pro-
vides input to the decision-making process, but decision making is
outside of measurement programs.

However, the most important process in a software measure-
ment program is to use the results to support management decision
making. This is the central purpose for a software measurement pro-
gram, and it may be tied to continuous improvement, total quality
management and other organizational initiatives. You can manage
with metrics by:

• Analyzing attributes and data
• Incorporating results into decision-making
• Showing the cost-benefit

Software Measurements Programs 119

You need to analyze the attributes and determine which factors
impact your processes. You also need to analyze the data to identify
what is working and what is not, what areas require further investi-
gation, and where opportunities for improvement exist

Incorporate the results and data into the management deci-
sion-making process in such areas as:

• Estimating time and cost of new development and enhance-
ments

• Allocating resources to support and development areas
• Improving quality and productivity
• Analyzing portfolios
• Making the buy-versus-build decision

Using measures to manage is how you can show the cost-bene-
fit of a measurement program. We conclude this chapter with five
case study examples of measures describing demonstrating the ben-
efits of measurement programs.

4.6 CASE STUDIES

A number of measures exist which can be utilized for managing the
software development or maintenance effort. These give insight into
the progress of the effort. This section includes five examples of such
measures. Each of them, in and of themselves, do not necessarily
tell a complete story, but if collected and utilized properly, provides
effective warnings of potential problems.

4.6.1 Example 1: Staffing Profiles

Although this measure would appear on the surface to be one that
is normally tracked, far too many organizations do not. We have
found that many organizations fail to utilize some of the most basic
and obvious measures necessary for effective program management.

Staffing profiles are one class of measure that would indicate
if there are potentials for overruns or underruns. It is simply a pro-
file of the planned staffing vs. the actual staffing (Figure 4.2). In
this example, the actual staffing is lagging the planned staffing. This
would indicate the potential for a schedule slip, since the staffing
levels are below that which was estimated as necessary to accom-

120 Chapter 4

Figure 4.2 Planned vs. actual staffing.

plish the project’s objectives. Whether this was actually occurring is
not known, on the basis of this chart alone, but it would indicate
that an investigation was necessary into what was occurring. Other
data would be needed, such as a milestone chart, to see if progress
was being maintained. Nonetheless, the chart served its purpose: to
alert the project leader of a potential problem.

Clearly, if the staffing profile indicated that actual staffing ex-
ceeded the planned level, this could indicate the possibility of an
overrun. As before, other data would be needed to confirm or reject
the hypothesis. But as before, the chart would have served its pur-
pose: to warn the project leader of a potential problem.

If supplemental information is added to these charts, expanded
usage of these charts can be made for program management pur-
poses. For instance, if we overlay onto these charts monthly data
on staffing changes, i.e., additions to and losses of personnel on the
project, it is possible to focus in more closely on the reasons for
staffing shortfalls. If the changes to staffing are not negligible, the
reasons for the shortfall may be due to a high turnover rate. This
may be an indication of other problems, such as employee dissatis-
faction. If the changes to staffing are negligible, the reasons for the
shortfall may be a failure in obtaining the right personnel to meet
the skill requirements. If we additionally overlay onto these charts

Software Measurements Programs 121

monthly data on staffing levels by skill area or technical discipline
(e.g., analysts, testers, quality assurance, etc.), it is possible to iden-
tify shortfalls in the technical disciplines necessary to implement
the project’s requirements.

4.6.2 Example 2: Software Size

As indicated earlier, software size is a measure essential for esti-
mates of schedule, cost, and resources required to the accomplish-
ment of a project’s objectives.

If a software development organization estimates the size of
the software to be produced, either in terms of lines of code or func-
tion points, stores that data in a database, and then tracks the proj-
ect against these estimates (see Figure 4.3), it has the basis for per-
forming rudimentary estimates of project schedule, cost, and
required staffing. New startup projects can be compared against
other projects in the database for similarity, and the schedule, cost,
and staffing estimates can be made on the basis of what the similar
project experienced. Clearly more accurate estimates can be made
if the growth in size was also tracked, along with the related changes
to schedule, cost, and staffing. Refinements and improvements in
the ability to estimate can be accomplished if supplemental informa-
tion is tracked, such as the number of requirements to be imple-
mented by the project.

Figure 4.3 Software size.

122 Chapter 4

Tracking software size can also provide indications of develop-
ment problems. If the software size grows during the term of the
project, there has to be a reason for it. It may be merely poor ability
to estimate (most developers usually underestimate, often by as
much as a factor of two or three). This can be resolved by recording
and tracking estimates, as described in the paragraph above. Often,
however, there may be other causes. For example, perhaps the re-
quirements are changing. If the requirements are changing in a con-
trolled fashion, and the impact of these changes are evaluated in
terms of cost and schedule prior to accepting the changes, then there
is no problem. On the other hand, if the size is changing due to un-
controlled requirements changes, then there is cause for concern.
This can lead to schedule slips, cost overruns, and customer unhap-
piness. Perhaps the change in size is due to poor understanding of
the requirements by the developers. Corrective action may be re-
quired, such as additional staff, staffing changes to acquire the nec-
essary skills, or training for the existing staff in the necessary skills.
Clearly additional data would have to be collected to zero in on the
cause of the problem. But again, the measure served its purpose: to
alert the project leader of a potential problem.

4.6.3 Example 3: Problem Report Tracking

Problem report tracking provides the capability to gain insight into
both product quality and the ability of the organization to maintain
the software.

Figure 4.4 plots, by week, the total number of problem reports,
those still open, and those that have been closed. At the start of a
new test phase, such as software integration testing, or acceptance
testing, the number of problem reports opened would increase fairly
rapidly, opening a gap between the number of problems reported
and closed. If the problems are straightforward, we would expect the
gap to decrease in short order. If not, that would be an indication of
a possible problem.

Again, additional data is needed to zero in on the problem. The
difficulty may not be a difficulty at all. It may be that the problems
reported are of little operational consequence, and as a result, the
resolution of them are being deferred to a later date. That would
suggest that to make more effective use of this chart, it would be
advisable to define categories of problem severity, and to overlay on

Software Measurements Programs 123

Figure 4.4 Problem report tracking.

this chart the number of problems open by severity category. On the
other hand, a problem may be indicated, as described in the next
paragraph.

To help in problem isolation, an additional set of charts that
would be useful are bar charts of the number of weeks problem re-
ports have been open at each severity level. For example, at the high-
est severity level, it would show the number open for one week, two
weeks, three weeks, etc. If there are substantial numbers open for
a long time, this could be an indication that the software is difficult
to maintain, or that the staff that does not understand as well as
it should the technical problem to be solved or corrected. Further
investigation would be needed.

‘‘Substantial numbers’’ and ‘‘open for a long time’’ are qualita-
tive terms. There are no pat answers as to what is substantial or
long. This is based on your organization’s own experience and the
complexity of the software under discussion. This suggests that it is
advisable to maintain records from past projects for use for compar-
ison.

4.6.4 Example 4: Control Charts of Newly Opened Bugs
(by week)

Measures collected in real life environments often exhibit statistical
variation. Such variation poses significant challenges to decision

124 Chapter 4

makers who attempt to filter out ‘‘signal’’ from ‘‘noise.’’ By signal we
mean events with significant effects on the data such as short or
long term trends and patterns or one time, sporadic spikes. We do
expect the number of newly reported bugs to fluctuate.

It is in the context of such fluctuation that we want to deter-
mine if the number of opened bugs, in a certain day, exceeds the
‘‘normal’’ range of fluctuation. Another phenomenon we are inter-
ested in identifying is a significantly decreasing trend in the number
of opened bugs. Such a trend might be a prerequisite for a version
release decision.

A primary tool for tracking data over time, in order to identify
significant trends and sporadic spikes is the control chart. Control
charts have been applied to industrial processes since the 1920s,
first at Western Electric then expanding to U.S. industry, to Europe
and, with outstanding results since the 1950s, in Japan. Control
charts are the basic tools in process improvement and Statistical
Process Control (SPC). Industrial Statisticians developed several
types of control charts designed to handle a variety of situations.
These charts can be applied to individual data points such as the
number of bugs opened, per week, to representative samples, such
as complexity of randomly selected modules, or to percentages, such
as percent of line with comments. Sometimes data is collected simul-
taneously in several dimensions such as response times to a routine
transaction at several stations in a network. Such multivariate (as
opposed to univariate data) can be analyzed with multivariate con-
trol charts. A comprehensive discussion of control charts is beyond
the scope of this book. We will focus here on interpreting real life
examples. The interested reader can find more information on con-
trol chart in the univariate and multivariate case in books such as
Kenett and Zacks [5] and Fuchs and Kenett [6].

All control charts consist of a graph tracking the relevant data
and three lines: an Upper Control Limit (UCL), a central line and
a Lower Control Limit (LCL).

Basic interpretation of control charts consists of monitoring the
occurrence of three patterns:

1. A point below the Lower Control Limit or above the Upper
Control Limit

2. A run of six points below or above the mean central line
3. A trend of six consecutive points going up or down

Software Measurements Programs 125

Any one of these events indicates a non-random occurrence that jus-
tifies appropriate action. As mentioned earlier downward trends in
number of reported problems might trigger a version release, a point
above the UCL might start an investigation as to the cause of this
unusually high number of problem reports.

Figure 4.5 consists of an individual (I) and a moving range (MR)
control chart for the number of new bugs per week reported in a beta
test of a new software product from a company developing Rapid
Application Development tools.

The I chart at the top tracks the number of new bugs. Superim-
posed on this chart are three lines:

• The Upper Control Limit (UCL � 68.99) located three stan-
dard deviations above the mean number of new bugs

• The mean number of new bugs (MU � 38.24) computed as
the total number of reported new bugs divided by the num-
ber of observation weeks

• The Lower Control Limit (LCL � 7.484) located three stan-
dard deviations below the mean number of new bugs

The MR chart at the bottom tracks successive differences in the
number of new bugs. The MR chart tracks variation in number of

Figure 4.5 Control chart for number of newly opened bugs (by week).

126 Chapter 4

reported new bugs and is used to compute the standard deviation
used in the I chart. Superimposed on this chart are also three lines:

• The Upper Control Limit (UCL � 37.79) for the moving
ranges

• The average moving range (MU � 11.56)
• The Lower Control Limit (LCL � 70) for the moving ranges

Analyzing the lower MR chart shows no unusual, non-random,
patterns. The I chart however indicates a significant increase in the
number of reported bugs on week 6 and a short run of three weeks
below average toward the end. If this pattern is sustained for three
more weeks management could declare that the number of reported
new bugs has significantly dropped, thus allowing for version re-
lease. Overall the average number of new bugs has been 38.2 per
week.

4.6.5 Example 5: Control Charts of Closed Bugs (by week)

In this example the number of closed bugs, per week is tracked on
an I and MR control chart (Figure 4.6). Analyzing the lower MR
chart shows a period were the number of closed bugs per week re-
mained almost constant (week 8–14) thus producing very low mov-
ing ranges (successive differences being almost zero). The I chart

Figure 4.6 Control chart for number of closed bugs (by week).

Software Measurements Programs 127

indicates a significant increase in the number of closed bugs on week
six indicating a quick response to the significant increase in number
of reported bugs identified above. Overall the average number of
bugs closed per week has been 37.3, just a bit lower than the number
of reported new bugs per week.

4.7 SUMMARY

This chapter provided an introduction to software measurement pro-
grams. After elaborating on the question Why Measure?, and key
definitions, the Goal-Question-Metric method is presented followed
by a section on the effectiveness of process measurement programs.
In that section attributes of an effective program are listed together
with positive and negative impact factors. A four-step implementa-
tion plan is discussed in detail so that practitioners can tailor this
program to their own organization-specific needs. Finally we con-
clude with five case studies that provide real life examples of how
measures are used in software development and maintenance orga-
nizations.

REFERENCES

1. ANSI/IEEE Standard 1045. Standard for Software Productivity Met-
rics, IEEE Standards Office, Piscataway, NJ.

2. ANSI/IEEE Standard 982.1. Standard Dictionary of Measures to Pro-
duce Reliable Software, IEEE Standards Office, Piscataway, NJ.

3. CMU/SEI-92-TR-20. Software Size Measurement: A Framework for
Counting Source Statements.

4. IEEE Standard 1044. Software Quality Measures, IEEE Standards Of-
fice, Piscataway, NJ.

5. Kenett, R.S. and Zacks, S. Modern Industrial Statistics: Design and
Control of Quality and Reliability, Duxbury Press, 1998.

6. Fuchs, C. and Kenett, R.S. Multivariate Quality Control: Theory and
Applications, Marcel Dekker Inc., 1998.

5
Quality of Software Products
and Documents

5.1. INTRODUCTION

In the previous chapter, we spoke of the development and implemen-
tation of measurement programs that can be used for determining
the current level of performance of the processes used to develop
software. Measures can also be used to evaluate the efficacy of pro-
cess improvement efforts. In other words, we can use these measures
to see how well our current processes are performing and for de-
termining if proposed changes to the process will improve the overall
level of performance.

Measures of product quality are integral to the determination
of process quality. For instance, measures of product quality, such
as fault density (which we will discuss in this chapter), define the
current capability of the process. We can determine the nominal
value and the three-sigma Upper Control Limit of fault density
across all projects, say, at the end of the coding and unit testing
phase. This characterizes the current status of the process. We can
pilot a change in the process for this phase of activity and measure
the nominal value and the three-sigma Upper Control Limit of fault
density achieved on the pilot project. We can use this as one determi-
nant of whether or not to make a permanent change in the process.

In this chapter, we will describe a number of measures of prod-
uct quality that can be utilized in measurement programs, thus en-
abling us to characterize the current state of the process, and provid-
ing a benchmark to evaluate the impact of process changes.

129

130 Chapter 5

5.1.1 Dimensions of Product Quality

Product quality has many dimensions. Software product quality has
been classified into Functionality, Usability, Reliability, Perfor-
mance and Serviceability (FURPS). Hewlett-Packard pioneered this
quality model in the late 1970s. It has now been adopted by many
organizations and integrated into an international standard ISO/
IEC 9126 [1]. We begin by defining these terms.

Functionality: The product has necessary function to accom-
plish the user’s task.

Usability: The product is easy to use in terms of accomplishing
its desired task. It is easy to learn. The user can interact effectively
with the product to enhance productivity. Effective training and doc-
umentation is available.

Reliability: This relates to the frequency and severity of pro-
gram errors and recovery attributes. How much can the user rely
on the program results?

Performance: This relates to efficiency, i.e., the speed with
which the product executes its functions. Included are overall
throughput, memory utilization, and response time.

Serviceability: This relates to technical support, response time
and quality of corrections; easiness of installation procedures.

The FURPS dimensions provide a broad classification of soft-
ware product quality. The ISO 9126 standard elaborates on the
FURPS classification and maps these broad characteristics into
subcharacteristics as follows:

Characteristic Subcharacteristic

Functionality Suitability
Accuracy
Interoperability
Security

Reliability Maturity
Fault tolerance
Recoverability

Usability Understandability
Learnability
Operability

Efficiency Time behavior
Resource behavior

Quality of Software 131

Maintainability Analyzability
Changeability
Stability
Testability

Portability Adaptability
Instability
Conformance
Replaceability

Kitchenhan and Pfleeger [9] discuss this and other related
models pointing out the generality of the ISO 9126 model and the
fact that it cannot be tested. The FURPS and ISO 9126 models
should therefore be considered only as abstract non-measurable con-
structs.

In this chapter we will elaborate on these dimensions in order
to achieve detailed and focused information on software product
quality characteristics. For example, we provide an operational
definition of specification document accuracy. Such definitions are
critical to our ability to control and improve the various aspects of
product quality. Keeping this in mind, quality models such as
FURPS and ISO 9126 can only serve qualitatively as a checks and
balance mechanism. They help us make sure that we don’t look for
the key under the lamppost, and that we measure what needs to be
measured.

5.1.2 Assessing Product Quality

Assessments of product quality determines the ability of the soft-
ware or corresponding documentation (e.g., specifications, design de-
scriptions) to meet user’s needs. If the quality is poor, users/custom-
ers are unhappy. Furthermore, those assigned to maintain the
software will also be unhappy, since the burden of correcting the
software and cleaning up the documentation will fall on their shoul-
ders. Often, no attempt is made to clean up the documentation, and
the maintainers effectively fly by the seats of their pants when it
comes to identifying and isolating the cause of the failure, and cor-
recting the software.

There are a number of measures that can be applied for assess-
ing product quality. These include measures such as problem report

132 Chapter 5

trends, problem report aging, defect density, and failure inter-
val. These have been classified as product quality measures by the
Joint Group on Systems Engineering [2]. IEEE Standard 982.1 [4]
identifies additional measures as product quality measures. These
include, among others, the better known measures, such as fault
density, defect density, cyclomatic complexity, requirements trace-
ability, and software maturity index. Both references provide good
detail on how to calculate these measures. We will describe only a
few of these measures and refer the reader to the cited documents
for a more detailed discussion of them.

5.1.2.1 Problem Report Tracking
Problem report trends and problem report aging quantify the total
number of problem reports written, those still open, those that have
been closed, and the length of time problem reports have remained
open. These are also identified by severity of the reported problems.
These measures have been described in Section 4.6.3 under problem
report tracking. They are considered product quality indicators inso-
far as they are an indicator of the amount of rework required. High
quality software requires minimal rework.

5.1.2.2 Defect Density
Defect density assesses product quality by normalizing the number
of defects detected in the software by the software size. Defects are
effectively synonymous with faults (see Chapter 6 for definitions of
errors, faults, and failures). Typical metrics are defects per thousand
lines of source code (KSLOC) or per function points. Depending on
how the data are collected, this measure can be used to identify
which components of the software have the most quality-related
problems, or to establish quality levels for the software product at
various points in the development cycle.

Defect density accumulates the numbers of defects detected as
a result of design or code inspections conducted during specific
phases of development effort. The basic measure is:

DD � �
I

i�1

Di/KSLOD (or KSLOC),

Quality of Software 133

where

Di � Total number of unique defects detected during ith
design or code inspection

I � Total number of inspections during that phase,
KSLOD � Total number of lines of design statements, in

thousands (for design inspections)
KSLOC � Total number of source lines of executable code or non-

executable data statements, in thousands (for code
inspections, or where estimates of the lines of code are
available on the basis of expansion from the known
lines of design statements)

The basis for evaluation is comparison against experience on past
projects. There are no absolute values for this measure or industry
standards to compare against.

Figure 5.1 illustrates the defect density measure. In the exam-
ple, the notation ‘‘PDR’’ and ‘‘CDR’’ refer to formal reviews. The PDR
or Preliminary Design Review is a review that is sometimes held
after the architectural design of the software is essentially com-
pleted to serve as a quality gate for the beginning of the detailed
design of the individual units of code. The CDR or Critical Design
Review, is usually held after the detailed design is substantially com-

Figure 5.1 Defect density example.

134 Chapter 5

pleted. It can be inferred from this chart that some detailed design
began before the PDR was completed, and was completed after the
CDR. This is not necessarily unusual. On the other hand, it could
be an indicator of a problem if the CDR was held too early, i.e., before
enough of the detailed design was completed to get a handle on the
overall adequacy of the design.

The use of formal reviews is sometimes incorrectly viewed as
imposing a waterfall development model. Formal reviews can be
held at points in the development process where a significant portion
of an activity, such as detailed design, has been substantially com-
pleted. If conducted properly, a formal review can be a very effective
means of ‘‘looking at the forest, instead of the trees.’’ While reviews
that are microscopic in nature, such as a unit-level peer review, are
essential, it is also necessary to step back and assume a view across
the product to ensure that all the pieces fit together.

Note that the defects corrected are also overlaid on the chart,
thus providing additional useful information.

5.1.2.3 Fault Density
Fault density is a measure that is similar to defect density. Whereas
the defect density measure tends to provide an indicator of the qual-
ity of the evolving software during design, fault density is a quality
indicator used during the testing activities. It can also be used dur-
ing operational usage of the software.

Again, the basis for evaluation is comparison against experi-
ence on past projects. Here, too, there are no absolute values for this
measure or industry standards to compare against.

Figure 5.2 illustrates the fault density measure. In this exam-
ple (although not shown on the chart), the testing activities covered
software integration. Note that some early coding of the software
was implemented. Also note that the integration of the software has
not been completed on schedule, since there are still some open prob-
lem reports. Rework and retest will be required. The advantage of
overlaying the ‘‘faults corrected’’ data is that additional insight into
quality and program management issues can be obtained.

5.1.2.4 Cyclomatic Complexity
This measure is used as an indicator of the potential for low reliabil-
ity of the software, as well as the ability to maintain the software.

Quality of Software 135

Figure 5.2 Fault density.

A number of studies have indicated correlation of the value of the
complexity measure with the probability of defects [3]. The theory
is that the higher the cyclomatic complexity, the greater the poten-
tial was for the developer to have introduced errors, thus lowering
the quality of the software. Furthermore, the higher the complexity,
the lower the understandability of the software, thus making it more
difficult for a maintainer to follow the logic and isolate problems. It
can be calculated for single units of code or aggregates of units of code.

The basic equation is:

C � E � N � 1

where
N � Number of nodes (sequential groups of program

statements
E � Number of edges (program flows between nodes)

Cyclomatic complexity can be calculated from either structured de-
sign language statements or from source code statements. A usual
limit for cyclomatic complexity is 10. It is often set lower for avionics
software, where a limit of 7 may sometimes be set. Such limits are
often stated in the organization’s design and coding standards.

136 Chapter 5

These limits are not to be exceeded in the code, as delivered, nor
after any rework.

A number of tools exist which can read both the structured de-
sign language statements and the source code. This permits evalua-
tions of the complexity to begin early on in the development effort,
continuing on through coding and test.

5.1.2.5 Requirements Traceability
A number of requirements traceability tools exist which facilitate
the tracking of requirements from the highest level specification
down to the individual line of code. These tools simplify the process
of keeping track of where the requirements have been implemented,
and facilitate the analysis of the impact of changes. However, in ad-
dition to this, there is a simple measure that can be applied that
quantifies the degree of traceability achieved. The measure is:

TM � (R1/R2)*100

where
TM � Traceability
R1 � Number of requirements implemented in the phase of

the effort under investigation
R2 � Total number of requirements applicable to the phase

of the effort.

Clearly, by the end of any phase of the software development effort,
the value should be very close to 100%. Unimplemented require-
ments will mean that the software will not perform as intended.

5.1.2.6 Software Maturity Index
The software maturity index is an indicator of the stability of the
software product. It is based on the number of changes that occur for
each release of a product. It is calculated from the following formula:

SMI � [MT � (Fa � Fc � Fd)]/MT

where
MT � The number of modules in the current release
Fc � The number of modules in the current release that

have been changed

Quality of Software 137

Figure 5.3 Software maturity index.

Fa � The number of modules in the current release that
have been added

Fd � The number of modules from the previous release that
were deleted in the current release.

The product is considered more stable as the value of SMI ap-
proaches 1.0. In the example in Figure 5.3, we see that in the ten
months since the last release of a 1000 module application, 47 mod-
ules were added, 60 were modified, and 12 were deleted. Conse-
quently, SMI is calculated to be 0.881. It is starting to stabilize. Even
from inspection of the figure, it can be seen that the number of added
and deleted modules appear to be leveling off, while the number of
modified modules continues to rise.

5.2 SOFTWARE SPECIFICATIONS METRICS

In the previous section, we described a sampling of measures that
can be used as indicators of software product quality. These mea-

138 Chapter 5

sures were primarily oriented toward evaluations of the code or de-
sign representations of the code. In this section, we will look at
measures of the quality of documentation used to describe the re-
quirements and design of the code.

5.2.1 Introduction to Software Specifications Metrics

Following the development of system requirements, the software
specification document forms a first definition of the software prod-
uct. Each of the following phases of design, coding, and integration/
testing transforms the initial software specifications into lower lev-
els of machine implementable details until the final machine-
processable object code is generated. Therefore, the quality and
completeness of the software specification directly influences the
quality of the final software product.

The purpose of software specification metrics is to provide
quantitative measures of the quality of the software specification
document. These metrics are designed to complement good ‘‘engi-
neering judgment’’ that is required to judge the quality of the soft-
ware specification documents. Quantitative measures can reveal
characteristics of quality. These metrics are established by coupling
documentation structure with systematic engineering methodology
to measure documentation completeness, consistency, and other
characteristics of document quality.

The quality of a software specification document is defined to
be determined by how well the interface, performance, and quality
assurance requirements satisfy the following measures:

• Completeness
• Accuracy
• Correctness
• Consistency
• Readability
• Testability

Of the above six measures of document quality, the specifica-
tion metrics discussed in this section addresses the following three
measures: completeness; accuracy; and readability. For each of these
quality measures, a set of metric formulas will be established. These
formulas are based on pioneering work done in the early 1980s at
Logicon and on metrics listed in IEEE 982.1 [4]. These formulas

Quality of Software 139

characterize the quality of the software specification document.
When the values from groups of formulas are examined, then a col-
lective evaluation of each of the three measures (i.e., completeness,
accuracy, and readability) can be quantitatively measured.

These specification metrics do not provide a comprehensive
evaluation of document quality. Qualitative engineering judgments
is still required in each measure. The measure of ‘‘completeness’’ is
one of the primary focuses of the specification metrics since its char-
acteristics are most amenable to quantitative measures. The mea-
sures of ‘‘correctness’’ and ‘‘testability’’ do not have any specification
metrics identified. Evaluations of these measures require qualita-
tive engineering judgment.

5.2.2 Overview of the Specification Metrics Methodology

The specification metrics methodology is a series of analysis steps
to systematically evaluate and quantify the quality of the program
document (see Figure 5.4). Upon receipt of the software specification
document, the program performance and interface requirements are
parsed into requirements categories. During this parsing, the data
is evaluated to determine whether the data is ambiguous, missing,
or inconsistent.

The second step processes the parsed data using statistical
analysis in order to derive the specification metrics. These formulas
provide quantitative values which can be compared against an eval-

Figure 5.4 Specification metrics methodology.

140 Chapter 5

uation scale to determine the degree of compliance with accepted
measures of program specification quality. The specification metrics
are evaluated for each function within the specification document to
identify specific deficiencies as well as point to trends of deficiency
and/or areas of complexity requiring further clarification.

By combining the evaluation for all functions within the pro-
gram specification document, a determination of overall program
specification quality can be assessed. The specific numeric value de-
rived from this process can be compared against limits of benchmark
measures of quality derived from historical data. Since specific nu-
meric values are calculated in the evaluation, it is easy to determine
the areas requiring correction in the specification document.

5.2.3 Parsing Requirements/Attribute Definitions

The first two steps in applying the specification metrics methodology
are to identify requirement sentences and then parse these sen-
tences into attributes of specification sentences.

The attributes of a sentence are:

1. Initiator of action
2. Conditions for action
3. Action
4. Constraints on action
5. Object of action
6. Immediate source of object
7. Immediate destination of object
8. Mechanization of action
9. Reason for action

Identification of specification sentences is discussed in Section
5.2.3.1, and the semantic rules which define attributes are discussed
in Section 5.2.3.2.

5.2.3.1 Identifying Specification Sentences
A specification or requirement sentence contains information that
defines what operations a system, subsystem, or function are to per-
form and under what constraints these operations occur. Normally,
these sentences contain the verb ‘‘shall,’’ which differentiate them
from purely commentary or descriptive sentences. The following

Quality of Software 141

paragraphs discuss instances in which sentences do not correspond
exactly with English sentences.

The parsing preceding the computation of software specifica-
tion metrics requires minimal perturbation of the original sentence
structure when decomposing a sentence into its attributes. There
exist conditions where sentences must be defined in other than the
strict English context.

One such condition is when compound sentences are encoun-
tered, connected by ‘‘and’’ or a semicolon. These sentences are split
into two (or more) sentences for evaluation purposes.

Another example of sentence rewriting occurs when the sen-
tence is written in the passive voice, usually indicated by presence
of the verb ‘‘be.’’ In these cases the sentence is rewritten into active
voice and an implied initiator is inserted if necessary. For example,

‘‘ An RSI shall be provided when either of the following condi-
tions occur . . . ’’
would be rewritten (for analysis purposes only) as:

‘‘[Remote Status Reporting] shall provide an RSI when either
of the following conditions occur . . .’’

When an implied subject is needed, such as in the above exam-
ple, it is always taken to be the title of the immediate function which
contains the sentence.

Specifications parsing operates on sentences, and thus tables
and figures present problems. Figures are assumed to be clarifica-
tion of verbal information within the text—as such, figures are not
directly analyzed. Tables may contain stand-alone information, and
hence their information is restructured into sentences. In particular,
I/O tables are rewritten as one requirement sentence per I/O item,
as shown next.

5.2.3.1.1 Referencing Sentence. Function 1—Inputs: The
inputs shall be as described in the following specification table.

Type Source Units Limits Accuracy Frequency

Activity initi- application N/A N/A N/A On request
ation re- software
quest

Elapsed time Timer con- N/A N/A N/A On request
indicator trol

142 Chapter 5

5.2.3.1.2 Parsed Translated Specification Sentence.
Specification Sample 1: Function 1 shall input the activity Initiation
Request from the application software on request.

Specification Sample 2: Function 1 shall input the elapsed time
indicator from the timer control on request.

5.2.3.2 Attribute Definitions
The following nine sub-sections present full definitions for the nine
sentence attributes listed at the beginning of Section 5.2.3. We con-
clude this sub-section with examples of parsing for four typical sam-
ple sentences (see Figure 5.5).

Figure 5.5 Sample parsing of sentences into attributes.

Quality of Software 143

5.2.3.2.1 Initiator of Action. Initiator of Action is the sub-
system, function or subfunction which causes the action. Initiators
may be applied, as is frequently true when the action is passive but
are required attributes in all sentences. The initiator is analogous
to the subject in English grammar.

5.2.3.2.2 Action. There are two types of action: positive and
negative. A positive action is the information processing or transfer
of data as performed by the Initiator. A negative action is the assign-
ment of constraints to an operation. Examples of positive actions are
shown in the first three sample sentences; the last sample sentence
shows a negative action. Action is analogous to the main verb in
English grammar, and is a required attribute for all sentences.

5.2.3.2.3 Conditions For Action. The Conditions for Ac-
tions are the prerequisite states, activities, and/or data which are
necessary for the action to occur. Examples include frequency of in-
vocation, necessary completion of some preliminary processing se-
quence, and necessary processing state before entry into some opera-
tion. Conditions for actions are not a required attribute for all
sentences.

5.2.3.2.4 Constraints on Action. The Constraints on Ac-
tion define the boundary conditions enforced on the action after initi-
ation. Constraints bound influence, define termination criteria, and
specify limits. Examples of constraints include numerical tolerances
and time durations. Constraints on actions are not a required attri-
bute for all sentences.

5.2.3.2.5 Object of Action. The Object of Action is the sub-
system, function, subfunction, or data item which is being acted on
by initiator via the action The object of the action is not a required
attribute for all sentences.

5.2.3.2.6 Source of Object. The Source of Object is the im-
mediate subsystem, function, subfunction, or information structure
(data base) from which the object originates. Source is applicable
only if the object is an item of information which is being transferred
by the Initiator, such as in the first sample sentence.

5.2.3.2.7 Destination of Object. The Destination of Object
is the immediate subsystem, function, subfunction, or information
structure (data base) where the object is sent. Destination is applica-
ble only if the object is an item of information which is being trans-
ferred by the initiator, such as in the first sample sentence.

144 Chapter 5

5.2.3.2.8 Mechanization of Action. Mechanization of Ac-
tion answers the question: ‘‘How is the action accomplished?’’ Mecha-
nization levies implementation-specific constraints, such as shown
in the third example, where CR must be determined by checking the
circumvention reset status bit. Mechanization is never a required
attribute.

5.2.3.2.9 Reason for Action. Reason for Action provides
the rationale for the action. This information is not strictly neces-
sary, but often helps to clarify the intent of a requirement sentence.
The first and last sample sentences contain Reason attributes.

5.2.4 Specification Metrics Definition

The quality of a software specification document is determined by
how well the interface, performance, and quality assurance require-
ments satisfy measures of completeness, accuracy, and readability.
These measures applied to a software specification document are
used to produce the Software Specification Evaluation Report.

The function is the basic entity of the specification document.
It specifies a feature of the software system which should match a
customer requirement. A function corresponds to one or more sen-
tences in the specification document. In some cases functions are
described in a table format and need to be parsed into equivalent
sentences.

After parsing we can compute, for each function, the following
measures:

N1 Total number of sentences
N2 Total number of attributes in sentences of corresponding

function
N3 Total number of missing attributes in sentences of corre-

sponding function
N4 Total number of ambiguous attributes in sentences of

corresponding function
N5 Total number of missing source attributes in sentences

of corresponding function
N6 Total number of missing destination attributes in sen-

tences of corresponding function
N7 Total number of ambiguous source attributes in sen-

tences of corresponding function

Quality of Software 145

N8 Total number of ambiguous destination attributes in
sentences of corresponding function

N9 Total number of source attributes in sentences of corre-
sponding function

N10 Total number of destination attributes in sentences of
corresponding function

N11 Total number of technically valid attributes in sentences
of corresponding function

N12 Total number of TBD in sentences of corresponding func-
tion

N13 Total number of missing conditions attributes in sen-
tences of corresponding function

N14 Total number of missing constraints in sentences of cor-
responding function

N15 Total number of descriptive sentences in sentences of
corresponding function

From these measures we compute, for each function, the follow-
ing metrics:

SM1 Missing information � Total number of missing
attributes/Total number of attributes � N3/N2

SM2 Ambiguous information � Total number of ambiguous
attributes/Total number of attributes � N4/N2

SM3 Functional connectivity � (Missing or ambiguous source
attributes � missing or ambiguous destination
attributes)/Total number of source and destination at-
tributes � (N5 � N6 � N7 � N8)/(N9 � N10)

SM4 Attributes presence � Total number of valid attributes
� N11

SM5 TBD frequency � Total number of TBD/Total number
of attributes � N12/N2

SM6 Missing condition information � Total number of miss-
ing condition attributes/Total number of sentences �
N13/N1

SM7 Missing constraints information � Total number of
missing constraints/Total number of sentences � N14/
N1

SM8 Descriptive information � Total number of descriptive
sentences/Total number of sentences � N15/N1

146 Chapter 5

5.2.5 Metric Evaluation Criteria

Each metric is evaluated and assigned one of four possible classifi-
cations. The four classifications are blue, green, yellow, and red.

Blue Exceeds all required performance levels
Green Complies with required performance levels
Yellow Contains some deficiencies in performance levels
Red Contains major deficiencies in performance levels

Blue and green are considered acceptable, yellow and red are
considered unacceptable.

If any single specification metric is calculated as being in the
red zone, both the function and the evaluation category is labeled
red.

Each organization has to determine its color boundaries. This
is usually done by analyzing past data. The following table provides
sample values that delineate the four color classifications, per func-
tion.

For example values of SM1 between 0 and 1/200 qualify as
‘‘Blue.’’ Values between 1/200 and 2.5/200 qualify as ‘‘Green,’’ values
between 2.5/200 and 5/200 as ‘‘Yellow.’’ Anything beyond 5/200 is
considered ‘‘Red.’’ We deliberately set the classification limits as ra-
tios to facilitate their interpretation. For example over five missing
attributes per 200 attributes qualifies as ‘‘Red.’’

Blue Green Yellow Red

I. Completeness
SM1—Missing information 0 1/200 2.5/200 5/200
SM2—Ambiguous information 0 1/200 2.5/200 5/200
SM3—Functional connectivity 0 1/200 2.5/200 5/200
SM4—Attribute presence 9 6 4 3.5
SM5—Fault TBD presence 0 1/200 1/20 1/2

II. Readability
SM3—Functional connectivity 0 1/200 2.5/200 5/200
SM8—Descriptive information 1/3 1/6 1/9 1/19

III. Accuracy
SM2—Ambiguous information 0 1/200 2.5/200 5/200
SM5—Fault TBD presence 0 1/200 1/20 1/2
SM6—Missing condition information 0 1/200 1/100 1/50
SM7—Missing constraints information 0 1/200 1/100 1/50

Quality of Software 147

In order to combine the metric values in a given category, the
values must be normalized to the same scale such as a 0 to 1 scale.
The normalization factors and resulting normalized scales are pro-
vided in the following table. The normalized metrics can now be
summed directly and form an evaluation scale for each of complete-
ness, readability, and accuracy. These scales are summed to produce
the function summary scale.

Blue Green Yellow Red

I. Completeness
Missing information—SM1*40 0 .2 .5 1
Ambiguous information—SM2*40 0 .2 .5 1
Functional connectivity—SM3*40 0 .2 .5 1
Attribute presence—(9-SM4)/5.5 0 .54 .9 1
Fault TBD presence—SM5*2 0 .01 .1 1

Total 0 1.15 2.5 5
II. Readability

Functional connectivity—SM3*40 0 .2 .5 1
Descriptive information—(.33-SM8)/.28 0 .65 .87 1

Total 0 .85 1.37 2
III. Accuracy

Ambiguous information—SM2*40 0 .2 .5 1
Fault TBD presence—SM5*2 0 .01 .1 1
Missing condition information—SM6*50 0 .25 .5 1
Missing constraints information—SM7*50 0 .25 .5 1

Total 0 .71 2.5 4

The next two tables show a full example with five functions and
all three metric categories. Every category value for each function
can be assigned a color according to prespecified weighted category
scales. Such weights can be determined through formal or informal
risk analysis. The function summaries are determined by summing
the category values for each function. The category summaries are
calculated by summing the weighted function values.

Systems are defined as a collection of functions sometimes or-
ganized in subsystems. The system summary totals are calculated
by aggregating values over all functions. The number of functions
is used as a multiplier to calibrate the color scales. For example if

148 Chapter 5

subsystem X has three functions, than subsystem summary values
above 33 are determined red.

Category Weight Blue Green Yellow Red

Total weighted completeness (Wc) 34% 0 1.15 2.5 5
Total weighted readability (Wr) 33% 0 .85 1.37 2
Total weighted accuracy (Wa) 33% 0 0.7 2.5 4

Function summary: 0 2.7 6.37 11

By normalizing the specification metrics we can evaluate di-
rectly, for each function, the weighted characteristics. Function
Completeness, Readability and Accuracy are derived by simply add-
ing the normalized metrics

• Function completeness � 40 ∗ (SM1 � SM2 � SM3)
� (9 � SM4)/5.5 � 2 ∗ SM5

• Function readability � 40 ∗ SM3 � (.33 � SM8)/.25
• Function accuracy � 40 ∗ SM2 � 2 ∗ SM5

� 50 ∗ SM6 � 50 ∗ SM7

and then, using the weights we determined for Completeness, Read-
ability and Accuracy, we compute the function summary as:

Function Summary � Wc{Function Completeness}
� Wr{Function Readability}
� Wa{Function Accuracy}

� Wc{40 ∗ (SM1 � SM2 � SM3)
� (9 � SM4)/5.5 � 2 ∗ SM5}

� Wr{40 ∗ SM3 � (.33 � SM8)/.25}
� Wa{40 ∗ SM2 � 2 ∗ SM5

� 50∗ SM6 � 50∗ SM7}

Similar computations can be derived for systems that consist of sev-
eral functions. Overall system categories are calculated as:

• System Completeness � ∑ function completeness over all
subsystems

• System Readability � ∑ function readability over all
subsystems

• System Accuracy � ∑ function accuracy over all
subsystems

Quality of Software 149

and then compute the overall system summary as:

System Summary � Wc{system completeness}
� Wr{system readability}

� Wa{system accuracy}

Software System Specification Evaluation Report—Quantitative Format

Categories

Completeness Readability Accuracy System
Subsystem Weight 34% 33% 33% Summary

Subsys. #1 15% 6.6 1.2 1.5 3.1
Subsys. #2 23% 11.3 10.5 11.6 11.1
Subsys. #3 32% 38.4 12.8 18.2 23.1
Subsys. #4 15% 1.0 5.1 2.1 2.7
Subsys. #5 15% 29.7 28.6 59.1 39.1

Category Summ. 20.5 11.8 17.9 16.7

Software System Specification Evaluation Report—Qualitative Format

Categories

Completeness Readability Accuracy System
Subsystem Weight 34% 33% 33% Summary

Subsys. #1 15% Blue Blue Blue Blue
Subsys. #2 23% Green Green Green Green
Subsys. #3 32% Yellow Green Yellow Yellow
Subsys. #4 15% Blue Blue Blue Blue
Subsys. #5 15% Yellow Red Red Red

Category Sum. Yellow Red Red Red

5.3 DOCUMENTATION READABILITY METRICS

5.3.1 Readability of Software Documentation
and Technical Manuals

Technical manuals and software documentation are often written in
such a way that the users of the manuals cannot understand them.
Since the 1920s many people have studied the problem of determin-

150 Chapter 5

ing whether a text sample is readable or not. One way to make text
easier to understand is to write it at an appropriate reading grade
level for its intended audience.

A phrase is a sequence of words, centered on a core element
called the head, that constitutes a coherent grammatical unit of the
same basic type as the head. A clause is a larger unit, one that resem-
bles a simple sentence in its parts and their arrangement. In tradi-
tional terms the major units in a clause are a subject and a predicate.
The subject is some type of noun or noun phrase, but the predicate
may have as its central unit a verb, an adjective, a noun phrase, a
prepositional phrase, or an adverb. A clause may be viewed as speci-
fying a relation among various participants, each identified by a
noun phrase and playing a certain role in the clause.

A sentence with only one clause is said to be simple; a sentence
with more than one clause is complex. Short sentences made up of
short words are easier to understand than long sentences made up
of long words (Flesch, 1974 [5]). It has become standard practice for
companies to specify writing guidelines (e.g. GM, Digital [6,7]). In
the next section we present various metrics that were developed to
determine the readability level of a document.

5.3.2 Readability Metric

5.3.2.1 The Flesch Reading Grade Level Metric
Flesch’s reading index requires counting sentences, words and sylla-
bles in the text samples. The grade level indicates the number of
years of education of an average English-speaking reader that can
understand the measured text.

Let

TSEN � Total number of sentences in the text sample
TWORD � Total number of words in the sample

TSYL � Total number of syllables in the sampleet

The average number of words in a sentence (AWORD) and average
number of syllables in a word (ASYL) are computed as:

AWORD � AWORD/TSEN
ASYL � TSYL/TWORD

Quality of Software 151

Standard writing averages approximately 17 words per sen-
tence and 147 syllables per 100 words.

The Flesch Reading Grade Level (GL) is computed using the
following formula:

GL � 0.39*AWORD � 11.8*ASYL–15.59

Round off the GL value to the nearest tenth. A Reading Grade Level
of 7–8 is considered standard. Values of 4–5 are considered easy and
15–16 very difficult.

5.3.2.2 The Kincaid Overall Grade Level Metric
The Department of Defense document Mil-M-38784A: ‘‘Manuals,
Technical: General Style and Format Requirements’’ [8], specifies a
formula developed by J. Kincaid for measuring readability of mili-
tary technical manuals by military personnel. The procuring activity
uses this metric to determine compliance. The Kincaid Overall
Grade Level Metric is calculated using a specified number of 200-
word samples that depends on the size of the manual in pages. The
Flesch Reading Grade Level is determined for each sample. The av-
erage grade level has to be within one unit of the required reading
grade level, however some samples can have grade levels up to 3
units above the required level. This approach allows for relatively
complicated sections to be written at a somewhat higher reading
level than the rest of the manual.

5.3.2.3 The Passive Sentences Metric
In order to compute this metric sentences have to be first classified
as active or passive. The passive sentences metric is the percentage
of passive sentences:

Passive Sentence Metric � (Number of active sentences)/(total
number of sentences)

Writing experts commonly advise to avoid passive sentences
unless the person or thing performing the action is unimportant.

The Passive Sentences Metric, the Flesch and the Kincaid read-
ing indices do not address issues of information accessibility and
overall document design. Moreover linguists attribute the meaning
of words not only to the text itself but also to the context of the text
such as cultural factors, local and personal interpretations and
definitions. Language engineering is a developing technology con-

152 Chapter 5

cerned with the improvement of verbal and written communication.
Such improvements are necessary if one wants to avoid mishaps due
to inconsistency in procedures or simple misunderstandings, espe-
cially in multinational organizations.

5.4 SUMMARY

This chapter focused on measuring and assessing the quality of soft-
ware products and related documents. The first section described
the dimensions of product quality first in an abstract, conceptual
framework and then on a precisely quantifiable basis. A special sec-
tion elaborates on assessing the quality of software specification doc-
uments. Such documents are critical to the success of the software
development effort. Moreover, identifying omissions and problems
in specification documents is considerably more cost effective than
relying on testing of the final product for preventing customers from
experiencing failures. Specification errors are more efficiently cor-
rected BEFORE any transformation of the problematic requirement
into the system occurs. Alternatively the error has to be identified
through testing, then skillful (and expensive) analysts have to be
employed to identify the fault causing the failure. For this reason
we should invest substantially in identifying error-prone areas in
specification documents. The last two sections in this chapter were
focused on metrics that are used to assess specification documents.

REFERENCES

1. ISO/IEC Standard 9126. Information Technology—Software Product
Evaluation–Quality Characteristics and Guidelines for Their Use, In-
ternational Organization for Standardization, Geneva, 1992.

2. Joint Logistics Commanders Joint Group on Systems Engineering.
Practical Software Measurement: A Guide to Objective Program Insight,
Version 2.1, 1996.

3. Pressman, Roger S. Software Engineering: A Practitioner’s Approach,
2nd ed., New York: McGraw-Hill Book Company, 1987.

4. ANSI/IEEE Standard 982.1. Standard Dictionary of Measures to Pro-
duce Reliable Software, IEEE Standards Office, Piscataway, NJ.

Quality of Software 153

5. Flesch, R. The Art of Readable Writing, Harper and Row, New York,
1974.

6. General Motors. S.T.A.R. General Motors Computerized Simple Test Ap-
proach for Readability, A Tool for Improved Communication, Public Re-
lation Staff, General Motors Corporation, Detroit, 1973.

7. Digital Equipment Corporation. Personal Computer Documentor’s
Guide, 1983.

8. Mil-M-38784A. Manuals, Technical: General Format and Style Require-
ments, Amendment 5, 1978, 1983.

9. Kitchenham, B. and Pfleeger, S. ‘‘Software Quality: The Elusive Tar-
get,’’ IEEE Software, Vol. 12, No. 1, (1996), pp. 12–21.

6
Software Reliability Control

6.1 INTRODUCTION

This chapter discusses methods to asses software reliability through
dynamic tests so that it can be controlled and improved. In particu-
lar, we will show how to determine software reliability from data
collected in various forms and stages of testing. We begin with an
introduction to software testing and proceed with fundamental
definitions and concepts of software reliability. Basic tools for the
analysis of defect data are presented, followed by a more mathemati-
cal treatment of software reliability models. The chapter concludes
with a section on software reliability estimation.

Varying amounts of time and money are commonly devoted to
testing software before it is released to field use or shipped as a prod-
uct. General approaches to software testing include:

• Functional Testing: tests of user functions of the software
• Coverage Testing: tests of various paths through the soft-

ware
• Partition Testing: the software’s input domain is divided ac-

cording to homogeneous classes, and tests are performed for
each class

• Statistical Testing: uses a formal experimental paradigm for
random testing according to a usage model of the software

Good engineering practice recommends planning the testing effort
in parallel to requirements analysis and high level design. Such
plans are documented in a test plan document.

155

156 Chapter 6

The Test Plan is typically defined at three levels: Unit Tests,
Integration Tests, and System Tests. The objective is to cover,
through actual testing, the functions defined in the product require-
ment and specification document and in the design description docu-
ment. The test plan is compared to these documents in order to de-
termine the level of coverage that it provides. The test plan
document describes the function being tested, the test case itself,
and the expected result. A report sheet, related to all cases provided
in the test plan, is eventually completed by the tester. A typical test
plan document consists of the following:

a. List of test cases
b. Test environment
c. Test cases classification
d. Prerequisite conditions for performing the tests
e. Expected test results

Unit Tests are written and performed after coding is completed by
the software developer. It is referred to as ‘‘white box’’ testing. White
box testing is design-based testing where, the basis for the testing
is the detailed design of the unit (sometimes referred to as modules).
A unit is considered ready only when the unit test report is com-
pleted. Areas covered by the Unit Tests include:

a. Basic functionality tests
b. Boundary and limitations tests
c. User interface validity tests
d. Environment and portability tests
e. Abnormal conditions tests

The testing itself is performed according to the test plan document.
Test reports are issued by the tester indicating what worked and
what went wrong.

Integration Testing is performed on a subsystem once all unit
tests are completed. In this case, the basis for the testing is the de-
sign of interfaces between collections of units. Integration testing
tests functionality of a group of units (modules) according to speci-
fied data interfaces and calling sequences. It includes functional
testing and testing the behavior of related units in case of software
and hardware failures. Memory and disk resource utilization checks
are typically also performed. Some of the areas covered in integra-
tion tests include:

Software Reliability Control 157

a. Normal operations
b. Abnormal operations
c. Activating of module interface options
d. Synchronization testing
e. Error recovery from hardware and software errors
f. Calling sequences
g. Data integrity

System Testing is typically performed at the application level after
integration testing has been completed. System testing tests the
software application’s functionality and performance for compliance
with the requirements documented in the product requirements
specification . It is referred to as ‘‘black box’’ testing in that the re-
quirements (not the design) are the basis for structuring the test
cases to be executed during system testing. Some of the areas cov-
ered in system tests include:

a. Normal operations
b. Abnormal operations
c. Functionality and performance
d. External interfaces
e. Error recovery from hardware and software errors

In order to put into context these various forms of testing we present
next a benchmark case study.

6.2 THE HITACHI SOFTWARE ENGINEERING CASE STUDY

The Japanese software industry has a long and distinguishes record
of considering the quality of software they ship to their customers
as a critical success factor. Hitachi Software Engineering Company,
a part of Hitachi, is one of the largest software houses in Japan.
About 20 percent of the systems developed at Hitachi Software have
five million lines of code, while the average size of a system is about
200,000 lines of code. Hitachi Software uses statistical control to im-
prove both the quality of the software they ship and the quality of
the process they use to develop it. Onoma and Yamura [1] provide
a glimpse at the software development methods developed over 20
years of trial and error at Hitachi Software.

The software development life cycle at Hitachi is based on the

158 Chapter 6

basic loop of developing, testing, and fixing commonly known as the
waterfall model. Hitachi specifies 10 steps as listed below:

1. Feasibility study
2. Project planning
3. Basic design and validation
4. Functional design
5. Structural design
6. Module design, coding and unit tests.
7. System test
8. Product verification
9. System simulation test

10. Product release

The development process is divided into three departments: design,
quality assurance, and production administration. The design de-
partment develops software and carries responsibilities for cost and
schedule, as well as the quality of requirements specification, design
documentation, manuals and, ultimately, the product itself.

The quality assurance department has no responsibility for
cost and scheduling, but carries full responsibility for product qual-
ity after release. The production administration department man-
ages the production schedule.

Design Quality Assurance
Department Department

Feasibility study
Project planning Product release

Basic design and validation System simulation
Functional design Product verification

Structural design System test
Module design, coding, and unit tests

(1)-(2)-(3) - - - - (4) - - - - -(5) - - - - (6) - - - - (7) - - - - -(8) - - - - (9) - - - - (10)- - - - - �
Hitachi software development life cycle

The process begins in the design department. After develop-
ment, when the design department declares that the quality of the
product is satisfactory and development work is at least 80% com-
plete, the quality assurance department administers an initial qual-
ity probe. In a quality probe, testers in the quality assurance depart-
ment run a small percentage of the functional test items. If the
results are satisfactory, the product goes into product verification

Software Reliability Control 159

for more extensive testing. If the results of the quality probe are
poor, the quality assurance department refuses to do any further
testing and sends the product back to the design department for im-
provements. This loop is reiterated until the product passes in veri-
fication tests, after which it goes on to the final test, a system simula-
tion test. At this stage the product is tested in a user environment
simulation. When all tests are successfully completed, the quality
assurance department authorizes shipment to the customer. The di-
agram on p. 158 is a schematic representation of the Hitachi soft-
ware development life cycle.

Before debugging, programmers use requirements specifica-
tions to explicitly design and specify tests for unit and system debug-
ging. Hitachi’s procedures include the systematic application of Pro-
gram Checking Lists (PCL) to be run during source code debugging.
PCLs consist of a description of the input data, expected outputs, a
priority classification indicating the relative importance of the test
and an item classification. Hitachi uses four categories:

• Basic functional tests (60% of PCLs)
• Boundary conditions tests (10% of PCLs)
• Abnormal conditions tests (15% of PCLs)
• Portability and environment tests (15% of PCLs)

The general guidelines specify about one PCL per 10 to 15 lines of
code. Batch programs are tested with fewer PCLs than on-line pro-
grams.

We will revisit the Hitachi case study later in the chapter.

6.3 DEFINITIONS OF SOFTWARE RELIABILITY

A necessary first step in any analysis of data is to establish defini-
tions and terminology. Problems reported as a result of testing and
regular usage by customers are recorded as Modification Requests
(MRs), Trouble Reports (TRs), or Authorized Program Analysis Re-
ports (APARs), or some similar designation. Such reports document
a departure from user requirements and performance deficiencies.
We call these events failures.

Developers can track the defect in the program that caused the
failure. We call these defects faults. Another common term used to
describe faults is ‘‘bugs.’’

160 Chapter 6

An error is the root cause of software faults that can potentially
lead to software failures. This potential is realized when a user or
a user-simulation triggers, under given conditions, an input stimu-
lus that reveals the software fault, thus creating a failure.

These definitions are based on the official terminology set in
the IEEE Standard Glossary of Software Engineering Terminology
[2] which specifies the following:

Error: ‘‘Human action that results in software containing a
fault. Examples include omissions or misinterpretation of user re-
quirements in a software specification, incorrect translation, or
omission of a requirement in the design specification.’’

Fault: ‘‘(1) An accidental condition that causes a functional unit
to fail to perform its required function (2) A manifestation of an error
in software. A fault, if encountered, may cause a failure. Synony-
mous with a bug.’’

Failure: ‘‘(1) The termination of the ability of a functional unit
to perform its required function (2) An event in which a system com-
ponent does not perform a required function within specified limits.
A failure may be produced when a fault is encountered.’’

Customer satisfaction is determined by experience with actual
usage of the software. It is sometimes measured as failures/1000
CPU hours.

Process quality is determined by errors introduced during the
process. Development process quality is often measured by faults/
1000 source lines.

We will use the terms ‘‘error,’’ ‘‘defect,’’ or ‘‘anomaly’’ in a ge-
neric sense. The terms ‘‘fault’’ and ‘‘failure’’ will be reserved to have
the technical definitions presented above.

The next section introduces the reader to software reliability
models that are used in the analysis of software defects.

6.4 SOFTWARE RELIABILITY MODELS

The standard definition of software reliability is the probability of
execution without failure for some specified interval, called the mis-
sion time. This definition is compatible with that used for hardware
reliability, though the failure mechanisms may differ significantly.
Software reliability is applicable both as a tool complementing devel-

Software Reliability Control 161

opment testing, in which faults are found and removed, and for certi-
fication testing, when a software product is either accepted or re-
jected. As early as in 1978, the now obsolete MIL-STD-1679(Navy)
[3] document specified that one error per 70,000 machine instruction
words, which degrades performance with a reasonable alternative
work-around solution, is allowed; and one error causing inconve-
nience and annoyance is allowed for every 35,000 machine instruc-
tion words. However, no errors which causes a program to stop or
degrade performance without alternative work-around solutions are
allowed.

These reliability specifications should be verified with a speci-
fied level of confidence. Interpreting failure data is also used to de-
termine if a product can be moved from development to beta testing
with selected customers, and than from beta testing to official ship-
ping. Both applications to development testing and certification test-
ing rely on mathematical models for tracking and predicting soft-
ware reliability. Many software reliability models have been
suggested in the literature (for a review see Wood [4]). In this sec-
tion, we cover four basic software reliability models.

6.4.1 The Jelinski and Moranda ‘‘De-Eutrophication’’ Model

Jelinski and Moranda, while working for the McDonnell Douglas As-
tronautics Company, published one of the first practical software re-
liability models [5]. They developed a model for use on a number of
modules of the Apollo program. The model assumptions are:

a. The rate of error detection is proportional to the current
error content of a program.

b. All errors are equally likely to occur and are independent
of each other.

c. Each error is of the same order of severity as any other
error.

d. The error rate remains constant over the interval between
error occurrences.

e. The software is operated in a similar manner as the antici-
pated operational usage.

f. The errors are corrected instantaneously without introduc-
tion of new errors into the program.

162 Chapter 6

Clearly it is difficult to envision a situation in which a perfect
error correction process is achieved. However, the instantaneously
corrected error part of the assumption can be avoided by not count-
ing errors which were previously detected, but were not corrected.
Assumption (c) can be avoided by dividing the errors into classes
based upon severity. For instance, one might have a category for
critical errors, a category for less serious errors, and one for minor
errors. Separate software reliability models are then developed for
each category.

Using assumptions (a), (b), (d), and (f), the failure rate is de-
fined as:

Z(t) � φ [N � (i � 1)], where t is any time point between the
discovery of the (i � 1)th error and the ith error. The quantity φ
is the proportionality constant given in assumption (a). N is the
total number of errors initially in the system. Hence, if i � 1 errors
have been discovered by time t, there are N � (i � 1) remaining
errors so the hazard rate is proportional to this remaining number.
Figure 6.1 is a plot of the hazard rate versus time. As can been seen,
the rate is reduced by the same amount φ at the time of each error
detection.

Let Xi � ti � ti�1 , i.e., the time between the discovery of the
ith and the (i � 1)st error for i � 1, . . . , n where t0 � 0, using
assumption (d), the Xi’s are assumed to have an exponential distri-
bution with rate Z(ti). That is:

f(Xi) � φ[N � (i � 1)]exp{� φ[N � (i � 1)] Xi}

Figure 6.1 The de-eutrophication process.

Software Reliability Control 163

The joint density of all the Xi, using assumption (b) is:

L(X1, . . . Xn) � �
n

i�1

f (Xi)

� �
n

i�1

φ[N � (i � 1)]exp{�φ[N � (i � 1)]Xi}

Taking the partial derivatives of L(X) with respect to N and φ
and setting the resulting equations equal to zero, the solutions for
the following set of equations are obtained as maximum likelihood
estimators, N̂ and φ̂, for N, and φ respectively.

φ̂ �
n

N̂ ��
n

i�1

Xi� � �
n

i�1

(i � 1)Xi

and

�
n

i�1

1

N̂ � (i � 1)
�

n

N̂ �
1

�
n

i�1

Xi

��
n

i�1

(i � 1)Xi�
which can be solved numerically using numerical techniques such
as Newton-Raphson iterations. Once we computed N̂ we derive φ̂
from the first equation.

The estimate of the MTTF (Mean Time To Failure) is derived,
after the jth occurrence, as:

Estimated MTTF after jth error �
1

Ẑ(tj)
�

1
φ̂(N̂ � j)

The estimated time to remove the next m errors, after observing n
failures, can be easily derived as:

Estimated time to remove the next m errors

� �
n�m

j�n�1

1
φ̂(N̂ � j � 1)

.

164 Chapter 6

The data required for the calculations of these estimates is either
the time between error occurrences, Xi , or the time of error occur-
rences, ti, i � 1, . . . n.

The biggest problem in seeking the estimates is the difficul-
ty in convergence of the numerical techniques employed to find
the maximum likelihood estimators. Difficulties include lack of
convergence, sensitivity of the iteration scheme to the starting
value, convergence to a saddle point or invalid estimate, and non-
uniqueness of the estimates. Littlewood and Verall [6] have shown
that a unique maximum at finite N̂ and non-zero φ̂ is attained if,
and only if,

�
n

i�1

(i � 1)Xi

�
n

i�1

(i � 1)

�
�

n

i�1

Xi

n

Otherwise there is no convergence and N̂ is infinity. Essentially this
condition means that the model can only be applied to software that
exhibits software growth, i.e. Xi � Xi�1. In any computer implemen-
tation of this model, the previous condition should first be verified
to ensure a unique finite maximum exists.

Jelinski and Moranda’s model cannot be applied to soft-
ware programs which are not complete. The program under test
has to be relatively stable with a total number of N errors pre-
sent initially in the code. Various extensions of this basic model
have been proposed. These include an evolving program which
accounts for the completion percentage, error rates proportional
to program size, non-homogeneous distributions of errors, error
rates proportional both to the number of errors remaining and
to the time spent testing and models accounting for varying tes-
ting efforts and programmers ability (see Musa, Iannino, and
Okumuto [7]).

We introduce in the next section with an extension of the Jelin-
ski-Moranda model proposed by Lipow [8]. The extension allows for
more than one error occurrence during a testing interval. This is
well suited to situations were data is aggregated over time. Since
failure data is usually reported on a weekly or monthly basis this
extension proved very useful.

Software Reliability Control 165

6.4.2 The Lipow Extension Model

The Lipow model assumes that:

a. The rate of error detection is proportional to the current
error content of a program

b. All errors are equally likely to occur and are independent
of each other

c. Each error is of the same order of severity as any other error
d. The error rate remains constant over the testing interval
e. The software is operated in a similar manner as the antici-

pated operational usage
f. During a testing interval i, fi errors are discovered but only

ni errors are corrected in the time frame

Assumptions (a) to (e) are identical to the assumptions of the Jelin-
ski-Moranda model. Assumption (f) is different. Suppose there are
M periods of testing in which testing interval i is of length xi. during
this time frame, fi errors are discovered, of which ni are corrected.
Assuming the error rate remains constant during each of the M test-
ing periods (assumption (d)), the failure rate during the ith testing
period is:

Z(t) � φ[N � Fi], ti�1 � t � ti

where φ is the proportionality constant, N is again the total number
of errors initially present in the program, Fi�1 � ∑i�1

j�1 nj is the total
number of errors corrected up through the (i � 1)st testing intervals,
and ti is the time measured in either CPU or wall clock time at the
end of the ith testing interval, xi � ti � ti�1. The ti’s are fixed and thus,
are not fixed as in the Jelinski-Moranda model. Taking the number
of failures, fi, in the ith interval to be a Poisson random variable
with mean Z(ti)xi, the likelihood is:

L(f1, . . . fM) � �
M

i�1

[φ[N � Fi�1]xi]fi exp{�φ[N � Fi�1]xi}

fi !

Taking the partial derivatives of L(f) with respect to φ and N and set-
ting the resulting equations to zero, we derive the following equations
satisfied by the maximum likelihood estimators φ̂ and N̂ of φ and N:

φ̂ �
FM/A

N̂ � 1 � B/A
and FM

N̂ � 1 � B/A
� �

M

i�1

fi

N̂ � Fi�1

.

166 Chapter 6

where

FM � ∑M
i�1 fi, the total number of errors found in the M periods of

testing, B � ∑M
i�1 (Fi�1 � 1)xi, and A � ∑M

i�1 xi, the total length of the
testing period.

From these estimates, the maximum likelihood estimate of the
mean time until the next failure (MTTF) given the information accu-
mulated in the M testing periods � 1/φ̂ (N̂ � FM).

6.4.3 A Case Study of the Lipow Model

In order to demonstrate the application of Lipow’s extension to the
Jelinski and Moranda De-Eutrophication model we will quote some
data collected at Bell Laboratories during the development of the
No. 5 Electronic Switching System.

The data consists of failures observed during four consecutive
testing periods of equal length and intensity:

Test Observed Predicted
period failures failures

1 72 74
2 70 67
3 57 60
4 50 54
5 49
6 44
7 40

The Lipow model produces the following estimates:
N̂ � 762 and φ̂ � 0.097, i.e. an estimate of 762 for the initial

number of failures and 0.097 for the proportionality constant repre-
senting the reduction in failure rate due to removing one fault from
the system.

The column of predicted failures in test periods 5, 6, and 7 is
computed from the Lipow model with the above estimates for φ and
N. Comparing observed and predicted values over the first 4 test
periods can help us evaluate how well the Lipow model fits the data.

Software Reliability Control 167

The Chi-square goodness of fit test statistics is 0.63, indicating ex-
tremely good fit (at a significance level better than 0.001). We can
therefore provide reliable predictions for the number of failures ex-
pected at test periods 5–7, provided the test effort continues at the
same intensity and that test periods are of same length as before.

The Jelinski-Moranda model and the various extensions to this
model are classified as time domain models. They rely on a physical
modeling of the appearance and fixing of software failures. The dif-
ferent sets of assumptions are translated into differences in mathe-
matical formulations (see Neufelder [9] and Musa et al. [7]). A model
free approach, that does not require the analyst to specify a physical
model, has been proposed by Kenett and Pollak in the 1986 issue of
the IEEE transactions in Reliability. The Kenett-Pollak model ex-
ploits optimality properties of Bayesian procedures known as
Shiryayev-Roberts procedures. The obvious advantage of this model
is that it is assumption free and thus more robust in actual applica-
tions. However the mathematical complexity of the model being be-
yond the scope of this book we refer the interested reader for details
on this approach to Kenett and Pollak [10,11] and Kenett and Zacks
[13].

When software is in operation, failure rates can be computed
by computing number of failures, say, per hours of operation. The
predicted failure rate corresponding to the steady state behavior of
the software is usually a key indicator of great interest. The pre-
dicted failure rate may be regarded as high when compared to other
systems. We should keep in mind, however, that the specific weight
of the failures indicating severity of impact is not accounted for
within the failure category being tracked. In the bug tracking data
base, all failures within one category are equal.

Actual micro-interpretation of the predicted failure rates, ac-
counting for operational profile and specific failure impact, is there-
fore quite complex. Predicted failure rates should therefore be con-
sidered in management decisions at a macro, aggregated level. For
instance, the decision to promote software from system test status
to acceptance test status can be based on a comparison of predicted
failure rates to actual.

Kanoun, Kaaniche, and Laprie [19] analyze four systems (tele-
phony, defense, interface, and management) and derive average fail-
ure rates over 10 testing periods and predicted failure rates. Their
results are presented below:

168 Chapter 6

Predicted Average failure rate
System failure rate over 10 test periods

Telephony 1.2 � 10�6/hour 1.0 � 10�5/hour
Defense 1.4 � 10�5/hour 1.6 � 10�5/hour
Interface 2.9 � 10�5/hour 3.7 � 10�5/hour
Management 8.5 � 10�6/hour 2.0 � 10�5/hour

As expected in reliability growth processes, in all systems, the
average failure rate over 10 test periods is higher than the predicted
failure rates. However, the differences in the defense and manage-
ment systems are smaller indicating that these systems have almost
reached steady state, and no significant reliability improvements
should be expected. The telephony and interface systems, however,
are still evolving. A decision to promote the defense and inter-
face systems to acceptance test status is therefore supported by the
data.

6.4.4 Pragmatic Software Reliability Estimation

A simple model for estimating software reliability has been proposed
by Wall and Ferguson [12]. The model relies on the basic premise
that the failure rate of software decreases as more software is used
and tested. The relationship proposed for this phenomena is:

C1 � C0 �M1
M0�

a

where:

C1 � Future period cumulative number of errors
C0 � Previous period cumulative number of errors—a

constant determined empirically
M1 � Units of test effort in future period (e.g. number of

tests, testing weeks, CPU time)
M0 � test units in previous period—a scaleable constant

a � Growth index–a constant determined empirically by
plotting the cumulative number of errors on a
logarithmic scale or by using the following
formula:

Software Reliability Control 169

a �

log �C1
C0�

log �M1
M0�

The failure rate, Z(t), is derived from the following formula:

Z(t) �
dC1
dt

� aC0

d�M1
M0�
dt �M1

M0�
a�1

This model is based on several assumptions:
a. Software test domain is stable i.e. no new features are in-

troduced.
b. Software errors are independent.
c. Errors detected are corrected within the same test period.
d. Testing is incremental so that new tests are introduced in

subsequent testing periods.
Revisiting the data used in the previous section, with an empir-

ically derived estimate of 0.8 for a, we get an estimated number of
failures for test period 5 of 47.17 failures. The Lipow model predicted
49 failures (see Figure 6.2).

Figure 6.2 Pragmatic software reliability estimation.

170 Chapter 6

6.4.5 Data Domain Models Using Statistically Designed
Testing Experiments

Software testing or mission simulation consists of verifying software
output under varying input conditions. Data domain models are
based on the partitioning of the input space into subsets. Let n be
the number of inputs in the sample which are chosen from the input
space E at random, according to the probability distribution pi of
input subsets. Let Ne be the number of inputs, out of n inputs, that
causes failures. The probability of success P � 1–Ne/n. Improving
the probability of success, P, can be achieved by finding and correct-
ing errors in the software program per each input condition. How-
ever, the challenge with this approach is detecting all the errors
through the many possible input combinations.

Since we may never be able to test each combination, a method
is required for identifying the input subsets used in the actual tests.
By breaking the software functionality into specific operating zones,
the software code can be exercised with combinations of inputs using
boundary analysis to identify whether the software can handle the
various zone inputs. Thus software testing would encompass the full
range of functionality as opposed to the execution duration method.

Designing the data domain experiment involves three initial
steps:

1. Identifying the software input test factors
2. Setting the factor levels
3. Determining the operating range zones such as nominal

level, lower limit, upper limit, above upper limit, below
lower limit

The number of all possible test combinations is cba where:

a � Number of factors
b � Number of factor levels
c � Number of operating range elements

As an example we will consider evaluating the reliability of
software controlling the movement of an electronic microscope of an
automatic testing system incorporating pattern recognition and
electro-optical technologies. The system is used to test, on-line,
micro-electronics devices as part of the production process in modern
automated factories. The software was designed and implemented
with Object Oriented methodologies.

Software Reliability Control 171

The factors to be considered for testing include:

A. Electro-mechanical motor speed
B. Lighting conditions
C. Environment noise levels
D. Size of device under test
E. Shape of device under test

If we set two levels for each factor (high and low) and identify
five operating range zone elements (nominal, upper limit, lower
limit, above upper limit, below lower limit), the number of possible
tests is: 5 � (2)5 � 160.

Statistical methodology provides techniques for constructing
experimental arrays that allow for efficient experimentation and
testing. The experimental array that corresponds to the testing of
all possible combinations of factors levels is labeled a Full Factorial
Array. In our example such an array consists of 160 tests or experi-
mental runs.

An alternative array is the Fractional Factorial Array which is
a selected subset of all possible combinations. The following table
provides an example of such a reduced experimental array with
eight test points and 8 � 5 � 40 test runs. The symbols � and �
stand for high and low levels of the corresponding factors labeled A
to E. The symbols N, UL, LL, �UL, and �LL stand for nominal,
upper limit, lower limit, above upper limit and below lower limit,
respectively. Each test point is performed five times, under all op-
erating zone elements. Successful tests are labeled S, failed tests
are labeled F.

Test factors Operating range zones
Test
point A B C D E N UL LL �UL �LL

1 � � � � � S S S S S
2 � � � � � S S S S F
3 � � � � � S S S F S
4 � � � � � F F F F F
5 � � � � � S F S S S
6 � � � � � S S S S S
7 � � � � � S F S F S
8 � � � � � S S S S S

172 Chapter 6

The 40 test runs produced 10 failures yielding a probability of
success � 75%.

The effectiveness of the test program can be determined by the
ratio of actual test runs to the total number of possible input combi-
nations in a full experimental array. The above test program’s effec-
tiveness is therefore 40/160 � 25%. For more details on statistically
designed experiments see chapters 11 and 12 in the book by Kenett
and Zacks [13].

Partial applications of factorial and fractional factorial arrays
have been proposed in the software and computer science literature
(see, for example, Binder [21] and Tartalja and Milutinovic [20]). The
application of statistical methodology to software testing remains,
however, a largely unexplored domain.

Several authors proposed to derive estimates of software reli-
ability by stratifying the input space into regions which can then be
assigned weights that reflect user workload profiles.

If nj runs are made in region j which carries weight Wj, and fj

failures are observed, the estimate of software reliability or probabil-
ity of success becomes:

P � 1 � �
K

j�1

fj

nj

Wj

For more information on data software reliability estimation using
domain models see Brown and Lipow [14] and Nelson [15].

6.5 SOFTWARE RELIABILITY ESTIMATION AND TRACKING

Software reliability estimation and tracking is an engineering man-
agement activity designed to:

• Determine the reliability of delivered software
• Evaluate the product at each milestone in the software life

cycle
• Formalize data collection and maintenance of historical

data

The basic steps in software reliability estimation and tracking
are:

Software Reliability Control 173

1. Identify the system to be studied, including associated sys-
tems and hardware configurations that will be involved in
system testing.

2. Determine reliability goals and classify failures into sever-
ity classes.

3. Develop operational profiles such as workload character-
ization of peak, prime and off hours.

4. Prepare tools and procedures for testing according to the
test plan.

5. Execute system tests.
6. Interpret failure data using tools such as Pareto charts,

M-tests and software reliability models.

Software reliability estimation and tracking can be part of an
overall metrics program. Chapter 4 described such programs in de-
tail. In conclusion, we will revisit the Hitachi case study in order to
present their approach to reliability estimation and tracking which
has become a benchmark for software developers.

6.6 THE HITACHI SOFTWARE ENGINEERING CASE
STUDY REVISITED

Software development projects at Hitachi (see [1]) are managed us-
ing a Quality Progress Diagram (QPD). The QPD tracks two impor-
tant numbers. The first is the target number of Program Checking
Lists (PCL) to be tested each day. This information is presented on
a curve that shows how many PCLs remain untested by the end of
each day. The second number is a forecast of the number of expected
faults. This information is used to draw a second curve tracking cu-
mulative number of expected and actual number of faults.

The number of Program Checking Lists to be tested, each day,
and the cumulative number of expected faults are determined on the
basis of basic data such as:

• Program size
• Program functionality (operating system, data base, on-

line)
• Previous fault record of the program (in case of enhance-

ments)
• Development environments and available tools

174 Chapter 6

• Language used
• Development type (new or reused)
• Fault record of similar projects
• Programmer experience and expertise

The Quality Progress Diagram consists of three superimposed
curves:

1. Actual and target numbers of untested Program Checking
Lists

2. Actual and expected cumulative number of faults
3. Backlog of faults

Tracking these curves provides a balanced view of the testing and
development efforts progress and quality. Deviations can be caused
by poorly planned or executed Program Checking Lists and an un-
usual number of faults—either too high or too low.

Hitachi is reporting an impressive record of quality and produc-
tivity improvements. Figure 6.3 shows the significant decrease in
software systems failure rates over a 12 year period and Figure 6.4
shows the distribution of faults by stages in the life cycle where they
are detected. Only 0.02% of the failures are reported by customers.

Figure 6.3 Number of Hitachi system failures, per month, per 1000 sys-
tems (over 12 years).

Software Reliability Control 175

Figure 6.4 Pareto chart of faults by stages in the Hitachi life cycle.

The complete data is:

• Unit testing: 63.1%
• Desk debugging: 21.5%
• Inspections: 8.6%
• Quality probes: 0.7%
• Field failures: 0.02%

Most failures at Hitachi are identified and fixed before system test.
Since failures detected by customers are much more expensive than
failures detected in early stages of development, Hitachi’s perfor-
mance is demonstrating a winning combination—high quality at
low cost! A case study from the telecommunication industry with
similar results can be found in Kenett and Koenig [16] and Kenett
[17]. The chapters in [18] include additional case studies from
AT&T, Westinghouse and IBM.

6.7 SUMMARY

Chapter 6 focused on the analysis of data collected during dynamic
testing of software systems. The chapter began with an introduction
to software testing emphasizing the need for test planning. A section
on definitions of software reliability terms set the background for an

176 Chapter 6

extensive section on software reliability models. Several models
were presented, with examples. A special section on data domain
models using statistically designed testing experiments concluded
that section and provided new directions for researchers and prac-
titioners to investigate. Throughout the chapter a case study from
Hitachi Software was used to demonstrate how data is used effi-
ciently and effectively by an organization that singled out the reli-
ability of its software products as a critical success factor.

REFERENCES

1. Onoma, A. and Yamura, T. ‘‘Practical Steps Toward Quality Develop-
ment,’’ IEEE Software, pp. 68–76, September 1995.

2. ANSI/IEEE Std. 729-1983. IEEE Standard Glossary of Software Engi-
neering Terminology, IEEE Standards Office, P.O. Box 1331, Piscata-
way, NJ, 1983.

3. MIL-STD-1679(Navy). Military Standard Weapon System Software
Development, Department of Defense, Washington, D.C. 20360, De-
cember 1, 1978.

4. Wood, A. ‘‘Predicting Software Reliability,’’ IEEE Software, pp. 69–77,
November 1996.

5. Moranda, P. and Jelinski, Z. Final Report on Software Reliability
Study, McDonnell Douglas Astronautics Company, MDC Report No.
63921, 1972.

6. Littlewood, B. and Verall, B., ‘‘A Bayesian Reliability Growth Model
for Computer Software,’’ The Journal of the Royal Statistical Society,
Series C, 22, 3, pp. 332–346, 1973.

7. Musa, J., Iannino, A., and Okumuto, K. Software Reliability Measure-
ment, Prediction, Application, McGraw-Hill, New York, 1987.

8. Lipow, M. ‘‘Models for Software Reliability,’’ Proceedings of the Winter
Meetings of the Aerospace Division of the American Society for Me-
chanical Engineers, 78-WA/Aero-18, pp. 1–11, 1978.

9. Neufelder, A. Ensuring Software Reliability, Marcel Dekker, 1993
10. Kenett, R. S. and Pollak, M. ‘‘A Semi-Parametric Approach to Testing

For Reliability Growth, with Application to Software Systems,’’ IEEE
Transactions on Reliability, pp. 304–311, August 1986.

11. Kenett, R. S. and Pollak, M. ‘‘Data-analytic Aspects of the Shiryayev-
Roberts Control Chart: Surveillance of a Non-homogeneous Poisson
Process.’’ Journal of Applied Statistics, Vol. 23, No. 1, pp. 125–127,
1996.

12. Wall, J.K. and Ferguson, P.A. ‘‘Pragmatic Software Reliability Predic-

Software Reliability Control 177

tion,’’ Proceedings of the Annual Reliability and Maintainability Sym-
posium, pp. 485–488, 1977.

13. Kenett, R. S. and Zacks, S. Modern Industrial Statistics: Design and
Control of Quality and Reliability, Dunbury Press, 1998.

14. Brown, J.R. and Lipow, M. ‘‘Testing for Software Reliability,’’ Proceed-
ings of the International Conference on Reliable Software, IEEE, 1975.

15. Nelson, E. ‘‘Estimating Software Reliability from Test Data,’’ Micro-
electronics and Reliability, 17, pp. 67–73, 1978.

16. Kenett, R. S. and Koenig S. ‘‘A Process Management Approach to Soft-
ware Quality Assurance,’’ Quality Progress, pp. 66–70, November
1988.

17. Kenett, R. S. ‘‘Managing a Continuous Improvement of the Software
Development Process,’’ Proc. of the 8th IMPRO Conference, Atlanta,
1989.

18. Kenett, R. S. ‘‘Understanding the Software Process’’ in Total Quality
in Software Development, Schulmeyer, G. and McManus, J., eds. Van
Nostrand Reinholt, 1992.

19. Kanoun, K., Kaaniche, M., and Laprie, J-C. ‘‘Qualitative and Quanti-
tative Reliability Assessment,’’ IEEE Software, pp. 77–87, April 1997.

20. Tartalja, I. and Milutinovic, V. ‘‘Classifying Software-Based Cache Co-
herence Solutions,’’ IEEE Software, pp. 90–101, June 1997.

21. Binder, R.W. ‘‘Modal Testing Strategies for OO Software,’’ IEEE Com-
puter, pp. 97–99, November 1996.

7
Software Review and Inspection
Processes

This chapter deals with methods to plan and improve software in-
spection processes. In particular, it will show how to assess the effec-
tiveness of software inspections, walkthroughs, and design reviews
from data collected from the preparation and conduct of such re-
views. We begin with an introduction to software inspection pro-
cesses. Basic tools for the analysis of defect data are presented, fol-
lowed by a statistical tool used in this context. Special attention is
given to the Software Trouble Assessment Matrix (STAM) that can
be used to evaluate the effectiveness of inspection processes. The
chapter concludes with a section on planning and controlling soft-
ware inspections.

7.1 INTRODUCTION TO SOFTWARE REVIEWS

In order to reduce the number of delivered errors or faults in soft-
ware it is estimated that most companies spend between 40–50 per-
cent of their software development efforts on testing [1]. This results
from insufficient emphasis on detection and removal of errors during
the earlier phases of the development effort, and what sometimes
appears to be a last gasp, heroic effort to find the errors before the
software goes out the door. Based on studies by Boehm [2], the cost of
error removal at that point in the development effort is considerably
higher than in the earlier stages. For example, the cost of fixing a
requirements-related error after the software has reached produc-
tion status is approximately 100 times greater than it would have

179

180 Chapter 7

been were it detected during requirements analysis. Thus, reducing
the efforts on testing is a key issue in attaining higher productivity
and lower cost in software development.

Generally, software reviews are considered to be one of most
effective techniques for reducing testing efforts. Such reviews are
implemented in the form of design reviews, code reviews, inspec-
tions, and walkthroughs. Software reviews can be classified into two
types: management reviews and technical reviews. Management re-
views consist of an evaluation of a project level plan or project status
relative to that plan. Technical reviews are an evaluation of software
elements by a team of designers and programmers. We distinguish
between two types of technical reviews: walkthroughs and inspec-
tions. Section 7.2 focuses on management reviews, Section 7.3 elabo-
rates on the planning and conduct of software walkthroughs and
software inspections.

7.2 MANAGEMENT REVIEWS

The IEEE 730.1-1989 standard on Software Quality Planning [3]
stipulates that a minimum of eight types of reviews are to be con-
ducted:

1. Software Requirements Review (SRR)
2. Preliminary Design Review (PDR)
3. Critical Design Review (CDR)
4. Software Verification Review
5. Functional Audit
6. Physical Audit
7. In-Process Audit
8. Managerial Reviews

These audits and reviews implicitly delineate several subprocesses
and their expected ‘‘outputs.’’ A separate section of the IEEE stan-
dard deals with ‘‘Problem Reporting and Corrective Action,’’ indicat-
ing how feedback is provided to resolve problems and improve these
subprocesses.

The U.S. Department of Defense (DoD) has long recognized the
importance of such reviews. These have been implemented on de-
fense contracts for quite a number of years, and have been applied
to systems independent of whether or not they contained software.

Review and Inspection Processes 181

DoD-STD-2167A [4] defined explicit requirements for management
reviews for software. The standard states:

The software development process shall include the following
major activities, which may overlap and may be applied recur-
sively or in an iterative manner:

a. System Requirements Analysis/Design
b. Software Requirements Analysis
c. Preliminary Design
d. Detailed Design
e. Coding and Computer Software Unit Testing
f. Computer Software Component Integration and Testing
g. Computer Software Configuration Item Testing
h. System Integration and Testing

Moreover ‘‘During the software development process, the contractor
shall conduct or support formal reviews and audits as required by
the contract.’’ Again, several subprocesses are identified and compli-
ance with the standard requires a formal mechanism for reviewing
the outputs of these subprocesses. The specific criteria for how the
reviews were to be organized were specified in MIL-STD-1521B [5].
This standard defined criteria for the conduct of the meetings, as
well as the materials to be reviewed at each type of review.

DoD-STD-2167A has been replaced by MIL-STD-498 [6], which
is soon to be replaced by the ANSI/IEEE/EIA version of ISO Stan-
dard 12207 [7]. The U.S. version of 12207 will be a commercial stan-
dard, incorporating some of the features of MIL-STD-498, thus per-
mitting the DoD to let software development contracts imposing
requirements on the contractor to use best commercial practices.
Neither of these standards invoke formal reviews. These are left to
the contractor’s discretion, or, conversely, the Government Program
Office can require these reviews in the Statement Of Work. MIL-
STD-498 specifically states that the contractor proposes the reviews
to be held, with the approval of the Program Office. An appendix
to MIL-STD-498 identifies a number of candidate reviews, and the
contractor is free to pick and choose from these for the proposed re-
views.

This change in philosophy is a result of complaints about the
formal reviews being a de facto imposition of the waterfall develop-
ment model. Many contractors also felt that in-process reviews, such
as inspections and walkthroughs, provided more useful information,

182 Chapter 7

and didn’t require as much cost and effort for both preparation for
and conduct of the meetings. It was felt by many that the reviews
were enormous ‘‘dog and pony shows,’’ with much preparation of
briefing materials, little substance, and tasty refreshments. It is our
experience that these reviews, held properly, provide much useful
information. While in-process reviews are extremely important, it is
also important, at key milestones, to step back and look at the big
picture. For instance, detailed design walkthroughs or inspections
provide excellent opportunities for catching logic errors and require-
ments noncompliances early; however, a formalized review of the
entire detailed design enables the affected parties to look at the big
picture and verify that the software interacts together properly and
satisfies the requirements in the main.

7.3 SOFTWARE WALKTHROUGHS AND SOFTWARE
INSPECTIONS

The sole objective of technical reviews of software is to uncover er-
rors. Such reviews may be performed at the conclusion of each of the
phases of the software development life cycle. In this way, errors are
prevented from infiltrating to following phases of the life cycle, in
which the cost of correcting these same errors will be much grater.
The success of technical reviews is measured by the percentage of
errors discovered in them. These reviews take advantage of the ef-
fects of the group dynamic of teamwork, as additional leverage for
discovering larger quantities of errors than would be discovered by
the same team members working as isolated individuals.

7.3.1 Software Walkthroughs

A walkthrough is a review method in which a designer or program-
mer leads members of the development team and other interested
parties through requirements, a segment of documentation, design,
or code, and the participants ask questions and make comments
about possible errors, violation of development standards and other
problems. A characteristic of walkthroughs is that all review mem-
bers, except for the designer and programmer, do not have to under-

Review and Inspection Processes 183

stand the details (structure, algorithm, data structure, etc.) of all
products in advance.

Walkthroughs are typically conducted according to the follow-
ing rules:

1. They are arranged and scheduled by the developer of the
work product being reviewed. Sometimes, they may be ar-
ranged for and scheduled by the project lead.

2. The project schedule allocates time for walkthroughs to be
held.

3. Management does not ordinarily attend the walkthrough.
4. The developer selects the list of reviewers, which is re-

viewed and approved by management, to ensure participa-
tion of developers of related products. Participants can in-
clude designers of the system, documentors of the function
being reviewed, testers responsible for functional and sys-
tem testing, developers of other parts of the system and
developers of interfacing systems. Sometimes, developers
from other projects will be invited as participants in order
to get an independent perspective, unbiased by knowledge
of the project’s unique characteristics.

5. Reviewers are given the materials in advance of the meet-
ing, typically three days to one week before the walk-
through session, and are expected to review them ahead of
time and come prepared with a list of questions.

6. Typical walkthroughs are scheduled to last for no more
than two hours. If the materials have not been completely
reviewed at the end of that period, or if a significant list of
issues has been created, another walkthrough is scheduled.

7. One person is appointed to guide the session. This person
should be trained to perform that role. That person com-
piles an action list consisting of all errors, discrepancies,
exposures, and inconsistencies uncovered during the
walkthrough.

8. All issues are resolved after the session. The walkthrough
provides problem detection, not problem resolution.

9. The results may or may not be reported. Some organiza-
tions prefer to leave it to the walkthrough participants to
ensure that the problems are resolved. Other organiza-

184 Chapter 7

tions, at minimum, prefer to capture error data for use in
process improvement activities.

7.3.2 Software Inspections

Inspection is another review method that relies on visual examina-
tion of development products to detect errors, violation of develop-
ment standards and other problems. Inspections provide a more for-
mal and rigorous method of performing technical reviews at the end
of development phases of the life cycle. Software inspections follow
the following rules:

1. Inspections appear as separate schedules activities in the
project development plan, and the work schedule contains
a time allowance for rework of deficiencies identified in the
inspection process.

2. Each development phase, at the end of which work prod-
ucts are to be inspected, is defined. Exit criteria are also
defined.

3. At the end of an inspection, formal approval is required
that deficiencies have been satisfactorily reworked and exit
criteria have been satisfied, before work can proceed to the
next development phase.

4. A specially trained moderator schedules and conducts the
inspections on the basis of special skills of knowledge. The
moderator is not the developer of the product being in-
spected nor a member of the development team; he does
not usually devote full time to this role, but is a working
analyst of programmer. A moderator’s work may be in-
spected in turn by inspectors from other projects.

5. The inspection of a work product at the end of a develop-
ment phase consists of six well defined steps:
a. Planning, during which the moderator schedules in-

spection activities and makes sure that inspection ma-
terials have been distributed.

b. Overview, presented by the author of the materials to
those who are to participate in the inspections.

c. Preparation, during which the participants study the
materials.

Review and Inspection Processes 185

d. Inspection meeting, during which the participants con-
centrate on finding errors in the material.

e. Rework, wherein the author corrects the errors found
in the meeting and summarized and reported by the
moderator.

f. Follow up, during which the moderator certifies the au-
thor’s rework and authorizes the next development
phase, and during which data is analyzed.

The inspection technique emphasizes the accumulation and analysis
of data about the types of errors and their frequency. As the data
base of error patterns grows larger and the moderators gain experi-
ence with error detection, the moderator can better analyze the re-
sults of inspections, can better help designers and implementers
avoid errors, and can help inspection teams learn to do a more thor-
ough job of error detection. Checklists developed from the data base
assist in this by assuring that all reasonable questions have been
considered during an inspection. Also, by comparing current inspec-
tion results against the data base, both developers and management
can become aware of situations in which corrective action must be
taken to avoid schedule delays or to reduce the likelihood of creating
excessively error-prone units of software. Accumulation and analy-
sis of error patterns can also highlight for management those devel-
opment practices in need of revision or suggest some that could be
initiated, thus leading to an improved development process.

7.3.3 Differences Between Walkthroughs and Inspection

Key differences exist between walkthroughs and inspections. They
may be characterized as follows:

1. Walkthroughs are informal. In some case, the developer
may request them, and in others, they may be a scheduled
activity, with the specific date to be decided by the devel-
oper or his supervisor. They may be performed on com-
pleted activities or during the development of an activity.

2. Walkthroughs, unlike inspections, do not require formal
approval although a second walkthrough is usually per-
formed when a ‘‘large’’ number of errors has been detected.

186 Chapter 7

3. The moderator of an inspection is not part of the team that
developed the work product. He is trained in the skills re-
quired for the moderator’s role: Planning the inspections,
selecting the participants, preparing for the inspection
meeting, maintaining an efficient pace during the inspec-
tion meeting, assuring that all reasonable error possibili-
ties have been considered, keeping interpersonal friction
to a constructive level, recording and categorizing errors,
following up on rework, and analyzing inspection results.
He carries the experience he gains from project to project
and becomes an expert in making the most effective possi-
ble use of the participant’s time.

4. The inspection is divided into six distinct steps, each of
which has its own stated objectives. In walkthroughs, these
steps exist but are blended together, with several objectives
being addressed simultaneously.

5. At a walkthrough meeting the developer of the work prod-
uct usually conducts the meeting and ‘‘reads’’ the materi-
als. At inspections, the moderator conducts the meeting
and designates someone other than the developer to read
the materials, so that the developer’s interpretation can not
inadvertently cover up errors.

6. Errors detected during the preparation period and dis-
cussed with the developer are usually not brought up at a
walkthrough meeting. During inspection meetings, all er-
rors are noted and described to establish error patterns,
improve the skills of all the participants, and flag any
schedule slippage as early as possible.

7. Management does not attend walkthroughs because their
presence may interfere with the free flow of discussion
among the working group members. Managers are not dis-
couraged from attending inspections but usually cannot
add valuable inputs to an essentially technical discussion.
Management, however, is always informed of the results of
inspection meetings, including data such as lines of code
completed, error rates, and time expected for rework and
retesting.

In summary, walkthroughs rely heavily on technical team self con-
trol and tends to confine the visibility of shortcomings to within the

Review and Inspection Processes 187

development team itself. On the other hand, the inspection process
allows for such visibility to extend beyond the development team
and imposes technical controls from sources that are external to the
team.

Checklists and checksheets are sometimes used in walk-
throughs and almost always used in inspections. The next sections
discuss how these tools used and how data collected in the process
is analyzed.

7.4 BASIC ANALYSIS OF SOFTWARE DEFECTS

7.4.1 Checklists and Checksheets

Documents and code are reviewed before, during, or after testing.
In order to facilitate such reviews, checklists that consist of specific
questions are used. Checklists provide a structure to inspections,
reviews, and walkthroughs. Such lists can be improved with time
and accumulated experience. Checksheets are used to record infor-
mation gathered in tests and reviews. A sample code walkthrough
checklist and a related checksheet are presented below. The check-
list items are classified, during a review, as being satisfied (Yes),
not satisfied (No), or not applicable (N/A). When not satisfied the
noncompliance is classified as major or minor, and then as missing
(M), wrong (W) or extra (E).

Code Walkthrough Checklist
Module ID: Walkthrough number:
Walkthrough performed by:
Date: Reinspection required? (Y/N)

Walkthrough checklist Yes No N/A

Programming engineering
Does the code match the detailed design?

Is the object/class breakdown logical?

Is the data transfer between the modules correct?

Does each class output only necessary routines and vari-
ables?

188 Chapter 7

Walkthrough checklist Yes No N/A

Are the class description headers complete and updated?

Were the coding rules observed?

Is the code written clearly?

Is the code efficient?

Is the code platform independent?

Is the code maintainable?

Does the code contain all the necessary standard tests?

Is the recovery from faults satisfactory?

Is there good use of existing code?

Can the code be reused?

Variables
Are the variables initiated prior to use?

Are the variables with unique names?

Are the arrays’ indices within the correct ranges?

Is the access to multidimensional arrays correct?

Does the access to the pointers relate to defined memory
area?

Are the different accesses to the same memory area cor-
rect?

Are the fixed values correct?

Are the border cases of loops and indexes correct?

Is there any access to free memory space?

Are all the names meaningful?

Calculation
Are the types in the calculation correct?

Is the possibility of overflow or underflow checked?

Is the possibility of division by 0 checked?

Are the components of a logical Boolean expression?

Are the preferences and brackets order correct?

Review and Inspection Processes 189

Walkthrough checklist Yes No N/A

If there is a macro in calculation—are there proper brack-
ets?

Control
Are the case sections taking care of all cases?

Does each loop have end conditions?

Does each program have exit treatment?

Does the program have a relevant exit value?

Are all code sections accessible?

Are the loop variables initialized and checked correctly?

Are the exit conditions of the loop correct?

Interfaces
Is the call to routines compatible to their definitions?

Are trace messages—system/process inserted?

Are constants transferred to routines expecting variables?

Does the function return the defined value?

Input/Output
Is the call to the routines correct (open, read, close)?

Are EOF, EOLINE being checked?

Is there any handling with inputs/outputs error?

Is the divider for reading large enough?

Is a temporary file name unique?

Does a file close after an error occurs?

Miscellaneous
Were the compilation mistakes corrected?

Do debug code or old notes remain?

Are warnings analyzed?

190 Chapter 7

The following code walkthrough checksheet is used to consoli-
date the review’s findings. The form is completed from the check-
sheet by aggregating the noncomplying cases, by classification
items.

Code Walkthrough Checksheet
Module ID: Walkthrough number:
Walkthrough performed by:
Date: Reinspection required? (Y/N)

Major Minor

M: Missing W: Wrong E: Extra M W E M W E Total Percent

Programming engineering

Variables

Calculations

Control

Interfaces

Input/output

Miscellaneous

Total 100%

7.4.2 Pareto Chart Analysis

When observing events, it is a universal phenomenon that approxi-
mately 80% of events are due to 20% of the possible causes. Exam-
ples include distribution of income of a firm where 20% of the clients
generate 80% of the revenues, personnel management where a few
employees account for the majority of absences, and typical meet-
ings, where a few people tend to make the majority of comments,
while most people are relatively quiet. A classical application to soft-
ware is the general fact that 80% of software failures can be attrib-
uted to 20% of the code. This universal observation was first made
by Joseph M. Juran who, in the early 1950s, coined the term ‘‘Pareto
Principle’’ which leads to the distinction between the ‘‘vital few’’ and
the ‘‘useful many’’ (Kenett [8]). The Pareto principle is so obvious

Review and Inspection Processes 191

and so simple that one might wonder where its added value is. Price
[9] eloquently describes its power by specifying that

it signals those targets likely to yield maximum results by the
deployment of limited effort. In acknowledging that there is lit-
tle point in frittering away resources through fighting where the
battle isn’t raging, it pinpoints the most vulnerable areas of the
enemy’s line, so to speak. It is a technique which finds profitable
employment when you are required to sort out a messy quality
control situation. When customer’s rejections are bombarding
you so thick and so fast that you don’t know where to begin,
Pareto tells you.

The Pareto Chart is a graphical display of the Pareto Principle.
It consists of bar graphs sorted in descending order of the relative
frequency of errors by category. Pareto charts are used to choose the
starting point for problem solving, monitor changes, or identify the
basic cause of a problem.

An interesting example of a Pareto Chart analysis is provided
by data from Knuth [10] on changes made during a period of ten
years, in the development of TEX, a software system for typesetting.
Knuth’s log book contains 516 items for the 1978 version, which is
labeled TEX78, and 346 items for the 1982 version, labeled TEX82.
These entries are classified into 15 categories (K � 15). The fifteen
categories are:

A—Algorithm: A wrong procedure has been implemented.
B—Blunder: A mistaken but syntactically correct instruction.
C—Cleanup: An improvement in consistency or clarity.
D—Data: A data structure debacle.
E—Efficiency: A change for improved code performance
F—Forgotten: A forgotten or incomplete function.
G—Generalization: An change to permit future growth and ex-

tensions.
I—Interaction: An change in user interface to better respond

to user needs.
L—Language: A misunderstanding of the programming lan-

guage.
M—Mismatch: A module’s interface error.
P—Portability: A change to promote portability and mainte-

nance.

192 Chapter 7

Q—Quality: An improvement to better meet user require-
ments.

R—Robustness: A change to include sanity checks of inputs.
S—Surprise: Changes resulting from unforeseen interactions.
T—Typo: Change to correct differences between pseudo-code

and code.

The A, B, D, F, L, M, R, S, and T classifications represent develop-
ment errors. The C, E, G, I, P, and Q classifications represent ‘‘en-
hancements,’’ consisting of unanticipated features that had to be
added in late development phases. These enhancements indicate a
lack of understanding of customer requirements, and, as such, can
be considered failures of the requirements analysis process.

Figure 7.1 presents a Pareto chart of the TEX78 data. The chart
does not show any dominant error category so that, apparently, the
Pareto Principle does not apply to this data. Figure 7.2 is the Pareto
chart of the TEX82 data. Here we notice that categories C, R, G, I,
and E contribute 71% of the errors. Categories C, G, I, and E being
classified as ‘‘enhancements’’ which are therefore the main cause be-
hind the logbook entries.

Figure 7.1 Pareto chart of TEX78 logbook data.

Review and Inspection Processes 193

Figure 7.2 Pareto chart of TEX82 logbook data.

7.4.3 The M-Test

Suppose we wish to compare two similar Pareto charts, containing
similar categories of data, but the data were captured during two
separate time intervals. A reason we might want to do this compari-
son is to see if there have been any significant changes that occurred
between these two intervals. Figures 7.1 and 7.2 present two Pareto
charts that we might want to compare. We will now describe a statis-
tical technique specifically designed to perform such comparisons for
any type of Pareto chart, whether the Pareto principle applies or not.

The M-test enables us to compare a given Pareto chart to a
previously established ‘‘standard’’ Pareto chart with the same cate-
gories. Assume the chart we want to compare to a standard Pareto
chart is based on a total of N observations subdivided into K catego-
ries, with ni observations in category i. Let pi be the expected propor-
tion of observations in category i, according to the standard Pareto
chart.
The M-test consists of five steps:

1. Compute the expected number of observations in category
i, Ei � Npi, i � 1, . . . K.

2. Compute Si � SQRT[Npi(1–pi)], i � 1, . . . K.

194 Chapter 7

3. Compute the adjusted residuals Zi � (ni-Ei)/Si, i � 1, . . .
K.

4. For a given value of K and a 10%, 5% or 1% significance
level determine the critical value C of Zi from Table 7.1:

Table 7.1 Critical Values for M-test

Significance level
K: number
of categories 10% 5% 1%

4 1.95 2.24 2.81
5 2.05 2.32 2.88
6 2.12 2.39 2.93
7 2.18 2.44 2.99
8 2.23 2.49 3.04
9 2.28 2.53 3.07

10 2.32 2.57 3.10
20 2.57 2.81 3.30
30 2.71 2.94 3.46

5. If all adjusted residuals, Zi, are smaller, in absolute value,
than C, no significant changes in Pareto charts are de-
clared. Cells with values of Zi, above C or below �C are
declared significantly different from the corresponding
cells in the standard Pareto chart.

We now revisit Knuth’s data by taking the 516 reported errors
in TEX78 as a ‘‘standard’’ against which the 346 errors in TEX82
are measured provides another opportunity to use the M-test. In this
example we will keep the categories by alphabetical order so as to
facilitate the comparison between TEX78 and TEX82.

Table 7.2 M-test Applied to Knuth’s Data

Category TEX78 Pi TEX82 Ei Si Zi

A 23 0.04 14 15.42 3.84 �0.37
B* 42 0.08 7 28.16 5.09 �4.16*
C* 37 0.07 85 24.81 4.80 12.54*
D 36 0.07 19 24.14 4.74 �1.08
E* 17 0.03 23 11.40 3.32 3.49*
F* 50 0.10 13 33.53 5.50 �3.73*
G 60 0.12 48 40.23 5.96 1.30
I 74 0.14 59 49.62 6.52 1.44

Review and Inspection Processes 195

For Knuth’s data K � 15 and for a significance level of 1%, one
derives by interpolation in the M-test table that C � 3.20. Table 7.2
presents the various data and computations necessary to perform
the M-test. A star indicates a significant difference at the 1% level.
Figure 7.3 presents the proportions of errors in TEX 78 (Pi), by cate-
gory and Figure 7.4 shows the difference between the TEX82 actual
data and what was expected to happen with 346 errors following the
same distribution as that of TEX78 (Ei). Figure 7.5 is a bar chart
of the standardized residuals, Zi. Values above 3.2 and below �3.2
indicate differences between TEX78 and TEX82 which are signifi-
cant at the 1% level. TEX82 contains significantly more errors in the
cleanup (C), efficiency (E), and robustness (R) categories than
TEX78. Significantly fewer errors are found in blunder (B), forgotten
(F), language (L), mismatch (M), and quality (Q). Knuth gives us

Figure 7.3 Distribution of proportion of software errors in TEX78.

Table 7.2 (Continued)

Category TEX78 Pi TEX82 Ei Si Zi

L* 30 0.06 2 21.12 4.35 �4.16*
M* 25 0.05 0 16.76 3.99 �4.20*
P 10 0.02 12 6.71 2.56 2.06
Q* 54 0.10 14 36.21 5.69 �3.90*
R* 23 0.04 30 15.42 3.84 3.80*
S 24 0.05 20 16.09 3.92 1.00
T 11 0.02 0 7.38 2.69 �2.75

196 Chapter 7

Figure 7.4 Actual (black) and expected (white) software errors in TEX82
based on N � 346 and TEX78 proportions.

Figure 7.5 Standardized residuals for software errors in TEX82. Values
above 3.2 (actuals higher than expected) and, below �3.2 (actuals lower
than expected) are significant at the 1% level.

Review and Inspection Processes 197

only clues as to the possible reasons for these differences. (For addi-
tional case studies and more on statistical methods used to compare
Pareto charts, see Kenett [8,11,12]).

Investigating differences between Pareto charts complements
the analysis of overall process error levels and trends. Increases or
decreases in such error levels may result from changes across all
error categories which will not show up in a Pareto chart. On the
other hand, there may be no changes in error levels but significant
changes in the mix of errors across categories.

7.5 LIMITATIONS OF THE SOFTWARE INSPECTION
PROCESSES

In planning software inspections one should weigh costs and bene-
fits. Such considerations must account for limitations of the software
inspection process. In particular, it is not the case that more inspec-
tions with many people attending always provide the expected bene-
fits. In this section, we review limitations of inspection processes as
ascertained in empirical studies.

Inspection costs involved can be subdivided into three catego-
ries that match the main steps of an inspection process. The steps
are:

1. Individual analysis
2. Team analysis
3. Repair

The costs and benefits of this process are driven by several mecha-
nisms:

• Inspection process structure specifying, in detail, the in-
spection process

• Techniques used in the inspection process
• Reviewer’s ability
• Code and document’s quality
• Interaction with other inspections, project schedule, and

personal workloads
• Tools and infrastructure

Inspection processes can use various methods such as Fagan inspec-
tions, active design reviews, phased inspections, and two-person in-

198 Chapter 7

teractions. The main differences between these methods involve the
size of the review team, the number of teams, and the strategy to
coordinate multiple teams. Various experiments performed at Lu-
cent Technologies and the University of Maryland indicated that the
structure of the inspection process alone does not affect the inspec-
tion effectiveness [13,14]. It was shown that the code size and func-
tionality, together with the reviewer’s ability, determine to a great
extent the effectiveness of inspections—far more than the inspection
structure.

Because meetings are expensive, it is important to determine
exactly how they contribute to inspections and whether superior al-
ternatives exist. Meetings can be effective if many of the existing
faults are found as a result of the meeting.

In planning inspections one can consider three approaches to
inspecting software:

1. Team with individual preparation (TIP)—Individual prep-
aration in order to become familiar with the code or docu-
ment. Afterward, the team holds an inspection meeting to
find faults.

2. Team with individual inspection (TII)—Individual prepa-
ration in order to detect faults. The team them meets to
collect defects and, if possible, find more.

3. Individual inspection (II)—Reviewers are expected to ana-
lyze the documents individually in order to find faults.
Later, each reviewer conducts a second review, again indi-
vidually [16]. The intent is to maximize error detection by
minimizing ‘‘losses’’ that could have resulted from failure
to detect the error during the first review.

Organization should develop an ‘‘inspection strategy’’ building on in-
spection approaches such as TIP, TII, or II. The effectiveness of the
inspection approach needs to be assessed in the context of specific
organizational culture and past experience.

Experiments conducted at the University of Maryland, Lucent
Technologies, and the University of Hawaii investigated the effec-
tiveness of defect detection due to varying the following review pro-
cess factors: inspection team size, single and multiple review ses-
sions, and sessions with and without defect correction [13,14,15].
The results of these experiments showed that single reviewers were
not as effective at defect detection as multiple reviewers, but, inter-

Review and Inspection Processes 199

estingly enough, that four reviewers were no more effective than two
reviewers. This would imply that very small teams are more effective
than larger teams. Furthermore, the findings indicated that multi-
ple sessions (reviews) were no more effective than just a single ses-
sion for the same unit of code or design.

A ground rule that is usually followed in conducting peer re-
views is that the sessions focus only on error detection, and that
error correction is out of scope. As noted above, these studies investi-
gated the effect of including error correction in the review process
to see if that improved the effectiveness of defect detection. It was
found that this was not an effective approach since it created more
disruption in the daily schedules of review attendees due to the
amount of time involved in attending review meetings.

In usual practice, preparation for inspections is carried out
with checklists or just intuitively. Reviewers can be assigned the
general responsibility to identify as many defects as possible or spe-
cific responsibilities focusing on a limited set of issues such as ensur-
ing appropriate use of hardware interfaces, identifying untestable
requirements, or checking conformity to coding standards. Porter et
al. [17] conducted a study to determine the effect of using systematic
detection techniques. In this study, reviewers were assigned to use
ad hoc, checklist, or scenario techniques. The scenarios were a collec-
tion of procedures for detecting particular classes of defects derived
from the checklist items. Whereas the checklist items may have been
a few terse statements that characterized a defect category, the sce-
nario was a lengthier description of what the defect category in-
volved. The results of this study showed that checklist reviewers
were no more effective than ad hoc, intuitive reviewers, and that
scenarios proved effective at detecting the defects that their scenar-
ios were designed to uncover. Furthermore, scenarios did not com-
promise their ability in detecting other classes of defects, as well.

What emerges from these studies is a picture that demon-
strates that peer reviews are effective in detecting defects, but can
be performed more efficiently. Techniques are available that have
the potential for improving the defect detection rate, and that re-
quire less staff hours to implement than current practice does.
Should we immediately start implementing two-person review
teams, utilizing scenarios? Should we continue to maintain a strict
focus on error detection, and not error correction? Crawford-Hines
[18] cautions that what works in one organization may be counter-

200 Chapter 7

productive in another. Organizational culture is an important factor
influencing the process by which peer reviews are conducted. Hun-
gerford and Hevner [19] question the extent to which the results of
the studies discussed earlier [13–17] can be generalized to industry
as a whole, since the studies were conducted in only one industrial
setting, and two university settings. They propose further studies
to explore the effect of group behavior on peer review results.

We endorse the approach set forth by Crawford-Hines [18]: use
what works best in your organization’s culture, and carefully pilot
any improvements in the peer review process before establishing the
change as a standard practice for the organization.

7.6 ASSESSING SOFTWARE INSPECTION PROCESSES
WITH STAM

The Software Trouble Assessment Matrix (STAM) is a tool that soft-
ware developers can use to evaluate the design and effectiveness of
software inspection and testing processes so that they can be im-
proved. STAM is used to organize relationships between three di-
mensions (see Kenett [20]).

Three measures are easily computed from the data collected in
a STAM analysis:

• Negligence ratio: This ratio indicates the amount of errors
that escaped through the inspection process filters. In other
words, it measures inspection efficiency.

• Evaluation ratio: This ratio measures the delay of the in-
spection process in identifying errors relative to the phase in
which they occurred. In other words, it measures inspection
effectiveness.

• Prevention ratio: This ratio is an index of how early errors
are detected in the development life cycle relative to the to-
tal number of reported errors. This is a combined measure
of the development and inspection processes. It assesses the
software developer’s ability to generate and identify errors
as early as possible in the development life cycle.

Process improvements are the result of attempts to learn from cur-
rent and past errors. Prerequisites to such improvement efforts are
that the processes have been identified and that process ownership

Review and Inspection Processes 201

has been established. Typical development processes consist of re-
quirements analysis, top-level design, detailed design, coding, and
testing. A causal analysis of software faults classifies faults as being
attributable to errors in any one of these activities. For such an anal-
ysis to be successful, it is essential that there be agreement on the
boundaries of the processes represented by these activities. In par-
ticular, the entry and exit criteria for each process have to be clari-
fied and documented. Such definitions permit effective data collec-
tion. STAM is a method to analyze data derived by answering three
questions:

• Where were errors detected in the software life cycle?
• Where were those errors actually created?
• Where could the errors have been detected?

These three dimensions are positioned like the letter T, and two
check sheets are used to record the number of errors classified in
the various combinations of the three dimensions. For example, con-
sider a certain software version with a total of 110 reported errors
at the completion of acceptance testing (see Table 7.3 and Figure

Figure 7.6 Graph of the curves determining the S1, S2, and S3 areas.

202 Chapter 7

7.6). The errors were reported throughout the software life cycle,
with the following distribution:

Table 7.3 Software Errors by Life Cycle
Detection Phase

Number of
Life cycle phase Errors

Requirements analysis 3
Top level design 7
Detailed design 2
Programming 25
Unit tests 31
System tests 29
Acceptance test 13

From the T-type matrix in Figure 7.7, note that, of the seven
errors detected during top level design, it was determined that two
errors could have been detected in the review session that occurred
after requirements analysis. These errors were missed by the re-
viewers. Of the 13 errors detected during acceptance testing, it was
determined that one error could have been detected at the require-
ments analysis review session, one could have been detected after
detailed design, six could have been detected during system testing,
and five could have been detected only during acceptance testing.
The implication is that eight errors escaped the inspection process
filters. A similar analysis indicates that, of the five errors that could
only have been detected during acceptance testing, one error is due
to a requirement error, three are the result of errors in preliminary
design, and one is due to a detailed design error.

A typical error analysis begins with assessing where errors
could have been detected and concludes with classifying errors into
the life cycle phases in which they were created. This procedure re-
quires a repeat analysis of each recorded error. As previously men-
tioned, the success of an error causal analysis is highly dependent
on clear entry and exit criteria for the various development phases.

Once the STAM checksheets are completed, cumulative failure
profiles are drawn depicting where errors were detected, where they
could have been detected, and where they were created. The areas
under these three cumulative frequency curves are defined as: Sl,
S2, and S3, respectively (see Figure 7.6). These areas are determined

F
ig

u
re

7.
7

S
T

A
M

T
-m

at
ri

x.

204 Chapter 7

by computing the cumulative totals over the seven software develop-
ment phases.

A curve is drawn by connecting the results of these additions
along the seven development phases. The area under this curve, la-
beled S1, is approximated by adding these numbers: S1 � 3 � 10 �
12 � 37 � 68 � 97 � 110 � 337. By referring to Figure 7.7, we see
that the same procedure is followed to get the S2 and S3 computa-
tions (S2 � 427 and S3 � 588).

The negligence ratio is computed using the formula: 100 � (S2
� S1)/S1. As previously mentioned, it measures the amount of errors
that escaped through the inspection process filters, indicating in-
spection efficiency. High inspection efficiency corresponds to low
negligence ratios. For the data in Figure 7.7, the negligence ratio is
100 � (427 � 337)/337 � 26.7%, which indicates an average gap of
26.7% of a life cycle phase between actual error detection time and
perfect detection under the current inspection process.

The evaluation ratio is derived using the formula: 100 � (S3 �
S2)/S2. It measures the delay of the inspection process in identifying
errors from the phase where they were created, indicating inspection
effectiveness. High evaluation ratios correspond to low inspection
effectiveness. For the data in Figure 7.7, the evaluation ratio is 100
� (588 � 427)/427 � 37.7%, which signals the need to redesign the
inspection process so that it can detect errors closer to their creation.
The current inspection filters, under perfect conditions, detect errors
with a delay of 37.7% of a lifecycle phase.

The prevention ratio is computed using the formula: 100 � S1/
(7 � total). As previously mentioned, it indicates how early errors
were detected relative to the total number of reported errors (total)
in the seven development phases. If all errors were created and de-
tected during requirements analysis, the prevention ratio would be
100%. Since early errors are less costly to correct, a high prevention
ratio implies a less costly development process. Conversely, a low
prevention ratio indicates that errors were detected late in the pro-
cess and therefore might negatively affect delivery schedules and
customer satisfaction. In Figure 7.7, the prevention ratio is 43.7%,
which indicates that errors were detected late in the life cycle.

Using the negligence, evaluation, and prevention ratios, soft-
ware developers can better understand and improve their inspection
and development processes. They also can use STAM to benchmark

Review and Inspection Processes 205

different projects within their companies and against those of differ-
ent companies.

REFERENCES

1. Grahm, Dorothy R. ‘‘Testing,’’ in Encyclopedia of Software Engi-
neering, Marciniak, John J., ed., New York: John Wiley & Sons, Inc.,
1994.

2. Boehm, Barry W. Software Engineering Economics, Prentice Hall,
1981.

3. NASI/IEEE Std. 730.1-1989. Software Quality Planning, IEEE Stan-
dards Office, P.O. Box 1331, Piscataway, NJ, 1989.

4. DoD-STD-2167A. Defense System Software Development, February 29,
1988.

5. MIL-STD-1521B. Technical Reviews and Audits for Systems, Equip-
ments, Munitions, and Computer Programs, June 4, 1985.

6. MIL-STD-498. Software Development and Documentation, December
5, 1994.

7. ISO/IEC Standard 12207. Information Technology—Software Life Cy-
cle Processes, August 1, 1995.

8. Kenett, R. S. ‘‘Two Methods for Comparing Pareto Charts,’’ Journal
of Quality Technology, 23, pp. 27–31, 1991.

9. Price, F. Right the First Time: Using Quality Control for Profit, Gower
Publishing Company, Brookfield, VT., 1984.

10. Knuth, D. ‘‘The Errors of TEX,’’ Report No. STAN-CS-88-1223, Depart-
ment of Computer Science, Stanford University, Stanford, CA, 1988.

11. Kenett, R. S. ‘‘Managing a Continuous Improvement of the Software
Development Process,’’ Proc. of the 8th IMPRO Conference, Atlanta,
1989.

12. Kenett, R. S. ‘‘Making Sense Out of Two Pareto Charts,’’ Quality Prog-
ress, May, pp. 71–73, 1994.

13. Porter, A., Siy, H., Toman, C. and Votta, L. ‘‘An Experiment to Assess
the Cost-Benefits of Code Inspections in Large Scale Software Devel-
opment,’’ IEEE Transactions on Software Engineering, 23(6) 1997.

14. Porter, A., Siy, H., Mockus, A. and Votta, L. ‘‘Understanding the
Sources of Variation in Software Inspections,’’ ACM Transactions on
Software Engineering Methodology, Vol. 7, January, 1998.

15. Votta, L. ‘‘Does Every Inspection Need a Meeting?,’’ Proceedings ACM
SIGSOFT 93 Symposium on Foundations of Software Engineering,
ACM, New York, 1993.

206 Chapter 7

16. Porter, A. and Johnson, P. ‘‘Assessing Software Review Meetings: Re-
sults of a Comparative Analysis of Two Experimental Studies,’’ Uni-
versity of Maryland, UMIACS-TR-97-15, February, 1997.

17. Porter, A., Votta, L., and Basili, V. ‘‘Comparing Detection Methods for
Software Requirements Inspections: A Replicated Experiment,’’ IEEE
Transactions on Software Engineering, 21(6):563–575, June 1995.

18. Crawford-Hines, S. ‘‘Software Inspections and Technical Reviews:
Transcending the Dogma,’’ Fifth Annual Conference on Software Qual-
ity, ASQC, October, 1995, pp. 73–81.

19. Hungerford, B. and Hevner, A. ‘‘Team Synergy in Software Inspec-
tions,’’ Information Systems and Decision Sciences, College of Busi-
ness Administration, University of South Florida, Tampa, FL, 1997.

20. Kenett, R. S. (1996), ‘‘Assessing Sofware Development and Inspection
Processes,’’ Quality Progress, October, pp. 109–112, with correction in
February, 1995.

8
Software Development Management
Dashboards

8.1 INTRODUCTION

In previous chapters we presented tools and methods used by soft-
ware development managers that face the major challenge of im-
proving products and processes. This concluding chapter will inte-
grate tools and methods implemented by several companies that
decided to meet this challenge. Using a case study approach, we will
systematically go from the raw data that companies collect and ana-
lyze, to the metrics they routinely report used for product and pro-
cess improvements. Using real life examples, we will describe how
to set up a Software Development Management Dashboard
(SDMD). In order not to disclose any company proprietary informa-
tion, we will disguise any actual companies by aggregating informa-
tion from several companies and giving the company described a fic-
titious name. The reader will be introduced to a fictional company
called MIO, Ltd. It is important to stress that MIO and the people
who work at MIO do not really exist: they represent an aggregate
picture that is typical of the industry. One can find many companies
similar to MIO within organizations developing shrink-wrap soft-
ware, embedded software, or special purpose projects (see 1,2,4).

The next section is based on observations that would typically
be made during a CMM-based appraisal (see Chapter 3) at MIO,
Ltd. Subsequent sections will put MIO in the context of the CMM,
and then describe how MIO implemented a software process im-
provement program. An integral part of the software process im-
provement program was a metrics program leading to the develop-

207

208 Chapter 8

ment of a SDMD. We then include a section on managing a software
organization with a SDMD. At the end of the chapter, we provide
basic recommendations to managers who decide to personally meet
the challenge of improving software products and processes in their
organizations.

8.2 THE MIO CASE STUDY

8.2.1 Some Background on MIO, Ltd.

MIO develops and supplies sophisticated systems that operate on
different platforms. MIO’s products are distributed worldwide
through local distributors with new versions coming out almost ev-
ery year. Recently, MIO has been facing severe setbacks. Their new
product is delayed by almost a year, and competitive pressures are
building up. Traditional customers began looking at alternative
products with better and more reliable performance. MIO’s manage-
ment decided to take a proactive role and perform an internal assess-
ment, using the CMM as a benchmark, and a trained assessment
team. This was considered a necessary first step in the deployment
of the improvement plan of software products and processes.

8.2.2 Assessment Interviews at MIO, Ltd.

We join the assessment team in typical assessment discussion
groups and interviews. The purpose of such interviews and discus-
sions is to provide the assessment team with sufficient understand-
ing about the practices in use by the software division at MIO. The
information gathered by the team, the examples provided by MIO
personnel, and the experience of the assessment team are used to
compose the assessment findings, which will allow MIO’s manage-
ment to launch specific action plans.

8.2.2.1 Middle Management Discussion Group
The managers began by describing some of the tasks for which they
are currently responsible. As the discussion began, one problem be-
gan to surface almost immediately: the monthly error reports that
the Quality Assurance Group produced. The process is as follows:

Management Dashboards 209

each released MIO system accumulates and collects error conditions
that occur while in use. Once a month, the errors that were recorded
during the month are downloaded by MIO distributors and e-mailed
to MIO headquarters for processing and reporting. The process of
downloading the errors was not explained, but it is assumed to be
a manual process. The files from all the sites are processed when
received. Quality Assurance is responsible for overseeing this effort.
This process includes the following steps:

• Data loading—In this step, error data from each system is
loaded into a special purpose application developed with a
4GL application generator.

• Report generation—Once the data is loaded, error reports
are generated for each MIO system version. In addition, a
summary report is generated, by distributor, and for all the
newly installed systems. The report formats are predefined
and contain both tables and graphs.

• Interim report distribution—During the discussion, it was
pointed out that certain distributors require that the gener-
ated reports be faxed to them as soon as possible, even prior
to completing the statistical analysis.

• Final report distribution—When the reports are completed,
they are disseminated according to a fixed distribution list
that includes management and technical leaders.

There are plans to automate this process, whereby error data will
automatically be collected via direct modem interfaces, requiring
minimal human intervention. When the new process is imple-
mented, the time required to produce the reports will be significantly
shortened.

Another area of concern is the lack of ability to isolate and filter
out errors that were recorded during scheduled maintenance or
training sessions. Currently, this type of data must be identified and
removed manually, which is a time-consuming process and suscepti-
ble to additional human errors.

There were several areas of deficiency related to this process
that were identified during the assessment. These emerged as a con-
sequence of the documentation reviews and the issues brought up
during the discussion groups. The following are the deficiencies that
were observed:

210 Chapter 8

a. There were no additional processes that analyze the errors,
their source, or their cause.

b. There was no process for tracing the errors reported and
establishing their ultimate disposition and resolution. No
procedures for this were found during the documentation
review.

c. There was no interface between the error reporting process
and the software maintenance and software development
teams. Information was thrown over the fence.

d. There was no policy for error data retention and/or disposi-
tion, and no evidence of the existence of such a policy was
found during the documentation review.

Another area of concern was staff turnover. It seemed like the com-
pany was constantly being raided by ‘‘head hunters,’’ trying to lure
away their very talented people to work for other companies. There
was very little data to learn how this was affecting individual proj-
ects, in terms of how frequently this was occurring, and the types
of skills being lost.

These issues were good candidates to address as part of the
process improvement effort, since they currently seemed to be caus-
ing a great deal of concern in the organization.

8.2.2.2 Requirements and Customer Interface Functional Area
Representative (FAR) Discussion Group

One of the customer representatives indicated that the ABC com-
pany, the largest client in his territory, has thirty-five MIO systems
with another six on order. ABC collects statistical data on the perfor-
mance of these systems. According to specifications of the MIO sys-
tem, the mean time between failure (MTBF) is 5000 hours. However,
in reality the MIO systems operate with an average of approximately
3000 hours MTBF. At one point in time, the MTBF was even lower.
The customer representative explained how he completes problem
reports after each service call, including his personal approach to
investigating the problems and determining their appropriate dispo-
sition. The documentation provided with the MIO system was not
always comprehensive enough, so that he made many decisions on
his own. This customer representative also described how ABC was
becoming more demanding with questions, such as: ‘‘What will be

Management Dashboards 211

done by MIO in order to prevent the latest problem from reoc-
curring?’’

Further discussion revealed that this customer representa-
tive’s experience was not atypical. It was becoming evident to the
assessment team that there was no clear understanding of the prob-
lems experienced by customers like ABC, and that there was no in-
depth software error data recorded in the trouble report forms. In
order to accomplish correction of the software, a manual preanalysis
of the problem reports was required in order to isolate and classify
errors resulting directly from software related problems.

8.2.2.3 Software Design and Coding FAR Discussion Group
Based on responses by selected participants to the CMM’s Maturity
Questionnaire, it was decided to formulate some open-ended ques-
tions to guide the discussion with the Software Design and Coding
FAR Discussion Group. The discussion with the software design and
coding FARs was to explore issues related to the software design
and coding process, in particular, schedules, definition of tests, and
baselines for software versions.

1. Schedules The development of schedules was very difficult
for the new system version. The development team had to estimate
development activities in a new environment. The lack of experience
with the new development tools and the new development environ-
ment resulted in major errors in the time estimates. In addition, the
FARs indicated that currently, there are no procedures or tools for
collecting detailed time records by specific activities. The availability
of such records could be used for developing more accurate time esti-
mates in the future, and for comparing and reporting current plans
to actual time schedules, but are not currently available.

2. Definition of tests and baselines for software versions The
FARs stated that the most critical issue in releasing a new software
version is the verification of the MIO system performance. This is
essential for users because they must have confidence that compati-
bility of the MIO system is strictly enforced between software ver-
sions. A related area of concern is the integration of new software
versions. There are currently no formal procedures to ensure that
all the components that should be included in a particular version
are indeed included. The company stated that, from what they knew,
the test team is looking for ways to develop testing procedures that

212 Chapter 8

will cover as many conditions as possible to ensure that most (and
hopefully all) bugs are detected prior to releasing a version.

A problem related to establishing a baselined reference point
for performing testing is the fact that requirements keep changing.
Even though there is configuration control, no one seems to be as-
sessing the impact of the changes. Marketing, who is the customer,
in effect, as far as the development group is concerned, will continu-
ously submit changes to the requirements, even as late as the inte-
gration test cycle. Because the configuration management system
operates rather slowly, the changes aren’t always communicated to
the developers and the testers.

These observations were confirmed by the discussion that oc-
curred during the Test and Quality Assurance FAR Group.

These prior paragraphs are not a complete history of the discus-
sion in these groups, nor do they represent a history of all the discus-
sion groups. What is relevant is that these discussion groups yielded
findings that later resulted in process improvement actions which
were supplied by software development dashboards.

After these discussions, the assessment team members consoli-
dated their observations and discussed (a) what they heard, and (b)
what were the consequences of what they heard. The team then pre-
pared the following preliminary findings:

• Customer problem reports are being actively collected and
analyzed. This provides MIO with an opportunity to fix and
follow up on customer complaints. The generated reports,
however, are not used effectively and several issues with
the process need to be addressed.

• Undocumented and incomplete test plans, policies, and pro-
cedures create uncertainty in the ability of MIO to properly
deliver working software versions.

• Inadequate schedule and work effort estimation procedures
and project plans make the planning and control of software
development tasks difficult and chaotic.

• Lack of formal configuration management makes the gener-
ation of new versions a high risk operation with no manage-
ment visibility of what is actually being shipped out to cus-
tomers.

• The data accumulated by MIO on software products and
processes is not effectively used by management.

Management Dashboards 213

These findings by the assessment team later resulted in a recom-
mended process improvement project to set up the MIO-Software
Development Management Dashboard. The MIO dashboard
was designed as a graphical display of metrics measuring dimen-
sions identified as critical to MIO by management. It is used in man-
agement and technical meetings to identify areas for improvement
and track progress towards targets and goals.

These findings and action items make MIO very typical of soft-
ware development organizations. The next section provides statis-
tics derived from the SEI’s database from conducted assessments
that support this claim.

8.2.3 Positioning MIO in the Context of Other Software
Organizations

In order to position MIO, Ltd. in the context of the capability of other
software companies, we refer to the Capability Maturity Model
(CMM) developed by the Software Engineering Institute (SEI). As
discussed in Chapter 3, the model characterizes the capability of
software development organizations, using five increasing levels of
maturity and 18 Key Process Areas (see refs. 2 and 7). The higher
an organization is on the maturity ladder, the greater the probability
of project completion on time, with properly working products, or,
in other words, the lower the development risks. To reiterate what
had been described previously, the initial level is characterized by
ad hoc, heroic efforts of developers working in an environment char-
acterized by little or no project plans, schedule controls, configura-
tion management, and quality assurance and mostly verbal undocu-
mented communication of requirements. Going up the maturity
ladder involves establishing proper project management systems,
institutionalizing organization-wide practices, and establishing
sound software engineering disciplines. MIO exhibits classical char-
acteristics of a Level 1 organization.

The SEI assessment database includes findings from assess-
ments performed in 606 organizations in recent years in a variety of
companies in the U.S. and overseas (see [8]). Of these organizations,
59.4% of them (like MIO, Ltd.), are in the process of moving from
the Initial Level (Level 1) to the Repeatable Level (Level 2). An addi-
tional 24.3% are in the process of moving from Level 2 to Level 3,
and only 13.9% were recognized as being at Level 3.

214 Chapter 8

Table 8.1 Key Process Areas by CMM Maturity Level and Activity
Domain

Level Project management Organization Engineering

Optimizing Technology change Defect prevention
management

Process change
management

Managed Quantitative process man- Software quality
agement management

Defined Integrated software man- Organization pro- Software product
agement cess focus engineering

Intergroup coordination Organization pro- Peer reviews
cess definition

Training program
Repeatable Requirements management

Project planning
Project tracking and over-

sight
Subcontract management
Quality assurance
Configuration management

Initial

Table 8.1 lists the characteristics of the 18 KPAs of the five
maturity levels with respect to their primary focus. Note that an
organization going from Level 1 to Level 2 needs to focus primarily
on establishing project management capabilities, whereas an orga-
nization going from Level 2 to Level 3 is putting in place KPAs whose
primary focus relates not only to project management concerns, but
also to establishing and institutionalizing practices for the organiza-
tion as a whole. In addition, there is also focus on the practices that
affect the software engineering aspects of the software development
enterprise. Level 2 organizations, in establishing a project manage-
ment discipline, are free to specify project-unique software develop-
ment processes. But each project must specify a software develop-
ment process, that must be documented in their project’s software
development plan. Level 3 organizations, on the other hand, have
established organization-wide standard practices (which may be ap-
plication domain-specific). (The CMM does encourage tailoring the

Management Dashboards 215

standard process for the unique characteristics of an individual proj-
ect.) Establishing standardized practices represents an organiza-
tion-wide concern. Similarly, the fact that a function or an organiza-
tional entity is established that has the responsibility of defining and
maintaining the standard process, also represents an organization-
wide concern. The KPAs which focus on software product engi-
neering and peer reviews reflect the software engineering aspects of
the organization’s activities.

Organizations embarking on a metrics program in conjunction
with their process improvement activities should synchronize these
efforts. The focus of their metrics activities should be commensurate
with the KPAs which are the focus of their process improvement
efforts. The next section describes how MIO determined the appro-
priate metrics required to support their plan to move from the Initial
Level 1 to the Repeatable Level 2.

8.2.4 Launching the MIO Metrics Program

After discussing the assessment findings, a series of process im-
provement action planning workshops were conducted. Based on the
recommendations of the process action team, MIO’s management de-
cided to focus improvement efforts in three areas:

• Project Management
• Requirements and Configuration Management
• Quality Assurance

In order to support these efforts, a metrics program was launched.
The objectives of the program were to supply the process improve-
ment teams working in these three areas designated by manage-
ment with quantitative information. These metrics are the collected
and tracked on a Software Development Management Dash-
board (SDMD).

The metrics used in the MIO dashboard include:

Project Management—Tracking staffing—planned versus
actual over time, and Software size—planned versus ac-
tual.

Requirements and Configuration Management—Re-
quirements volatility, and tracking of requirement
changes.

216 Chapter 8

Quality Assurance—Problem report tracking, tracking re-
port by severity, and software reliability estimates.

MIO is focused on one sophisticated system which is the only
project undertaken by its development team. The MIO SDMD is
therefore based on information from one project. Figure 8.3 presents
a sample dashboard. In case the development organization is en-
gaged in several projects simultaneously, several SDMDs will be re-
quired.

8.3 GENERIC SOFTWARE DEVELOPMENT MANAGEMENT
DASHBOARDS

The Software Development Management Dashboard (SDMD) is a
tool for visualizing and monitoring the status of a project. It provides
information vital for predicting its future course. The charts, which
are accessible to all members of the team, allow the entire project
team to determine the status of a project quickly and to identify ar-
eas for improvement. The dashboard can help project managers keep
their projects on course when data for the control panel is updated
regularly and gauges are maintained within acceptable ranges. In
general we distinguish five major categories of project data:

1. Progress reports
2. Requirements and configuration
3. Staffing levels
4. Risk analysis
5. Quality information

These categories are chosen to cover the primary areas that every
project manager should track on large-scale software development
projects. For each category we describe a set of generic metrics that
are routinely used to manage organizations. These can, of course, be
supplemented with additional metrics, as needed, to provide better
insight into the status of the project.

In the next section, we present an example of a SDMD.

Management Dashboards 217

8.4 A SOFTWARE DEVELOPMENT MANAGEMENT
DASHBOARD CASE STUDY: THE SPMN MAIN CONTROL
PANEL*

In this section we describe a case study implementation of a Soft-
ware Development Management Dashboard: The Control Panel de-
veloped by the Software Program Managers Network (SPMN). This
SDMD is a comprehensive shareware Excel implementation that
can be downloaded from www.spmn.com.

The SDMD Control Panel is a shareware tool for visualizing
and monitoring the condition of a project, and predicting its future
course. The panel allows the entire project team to determine the
status of a project quickly, and to identify areas that need improve-
ment. When data for the SDMD control panel is updated regularly
and gauges are maintained within acceptable ranges the panel can
help project managers keep their projects on schedule. The panel
has five major categories and two subcategories of project data:

1. Progress
a. Productivity
b. Completion

2. Change
3. Staff
4. Risk
5. Quality

These categories were chosen to cover the primary areas that every
project manager should track on large-scale software development
projects.

The project data reported by the gauges are derived from basic
data contained in an Excel workbook, which forms the basic part of
the tool. It includes a spreadsheet (worksheet) of project data. That
worksheet also includes a definition of project boundary conditions,

* We thank the Software Program Managers Network for allowing us to use
the following material, which is adapted from Chapter 2, ‘‘Project Control
Panel,’’ of The Program Manager’s Guide to Software Acquisition Best
Practices, published by the Software Program Managers Network [9]. In
some areas we have also amplified the descriptions.

218 Chapter 8

Project Date Data Project Baseline Data

Type of reporting Project start Total length of Current Budget at Original
period (M � date (month/ project (in Reporting Comple- number
Monthly or W day/year) reporting Period tion (BAC) of project
� Weekly) periods) require-

ments

Monthly 8/6/96 12 4 10,000,000 85

Figure 8.1 Project boundary conditions.

for example, total schedule, and budget. Figure 8.1 illustrates that
portion of the spreadsheet. (The control panel which illustrates how
all the information is tied together is illustrated in Figure 8.3). We
will describe below how the information in the worksheet is used as
input to the gauges.

The data in the original SPMN spreadsheet are color-coded.
That color coding is not provided here; however, we have established
a convention to map from the SPMN’s color coding of the data. That
convention is illustrated in Figure 8.2.

Figure 8.3 illustrates the SDMD contol panel. The gauges are
numbered in the figure in accordance with their descriptors.

8.4.1 Progress

The basic data for Gauges 1, 2, 4, 5, and 6 are derived from the data
contained in the portion of the spreadsheet shown in Table 8.2.

1. The Earned Value or Budgeted Cost of Work Performed
(BCWP) gauge shows the cumulative Earned Value delivered to
date. The cumulative Earned Value indicator shows the amount of
work that has been completed on the project. This metric is based on

Mapping to SPMN Color Code

Current Final Data Imported
Reporting Reporting from MS

Reporting Period/Data Period Period Project

SPMN Convention Yellow Red Green

Our Convention Normal font Italic font Bold font

Figure 8.2 Equivalent color-code.

Management Dashboards 219

F
ig

u
re

8.
3

T
h

e
S

D
M

D
pr

oj
ec

t
co

n
tr

ol
pa

n
el

.

220 Chapter 8

Table 8.2 Cost/Schedule Performance Data

Reporting period Earned value measures
data

Cumulative Cumulative
Reporting planned earned Actual Estimate at

period Period value value cost completion
no. end date (BCWS) (BCWP) (ACWP) (EAC)

1 9/5/96 500,000 500,000 650,000 10,000,000
2 10/5/96 1,000,000 970,000 1,550,000 11,000,000
3 11/5/96 2,000,000 2,000,000 2,500,000 11,500,000
4 12/5/96 3,500,000 3,000,000 3,700,000 12,000,000
5 1/5/97 4,000,000
6 2/5/97 5,250,000
7 3/5/97 6,150,000
8 4/5/97 7,000,000
9 5/5/97 7,750,000

10 6/5/97 8,500,000
11 7/5/97 9,250,000
12 8/5/97 10,000,000

the notion that, at the beginning of a project, every task is allocated a
budget, which then becomes its planned value. As work is completed
on a task, its budget (or planned value) is ‘‘earned’’ as a quantitative
measure of progress. The maximum value on the gauge is the total
original budget for the project known as Budget at Completion
(BAC). Note that BAC is constant for the life of the project and repre-
sents the total value of work to be performed. The triangle indicator
shows the cumulative planned value or Budgeted Cost of Work
Scheduled (BCWS), which is the total value of work that was origi-
nally scheduled for completion by the end of this reporting period.

The cumulative earned value (BCWP), cumulative planned
value (BCWS), and BAC indicators can be compared with one an-
other to make critical observations about progress on the project. By
comparing the cumulative earned value (BCWP) indicator with the
cumulative planned value (BCWS) indicator, you can determine if
the project is ahead of or behind schedule. This is a good measure
of schedule deviation because it takes into account the amount of
work that was planned to be completed.

Management Dashboards 221

In the example shown in Figure 8.3, it would indicate that the
project is behind schedule.

Note: Establishing a planned value and a completion criterion
for each task before work begins is critical for using the Earned Value
metric successfully to measure progress. Cumulative Earned Value
is the sum of the planned values for all completed tasks. The best
completion criteria for a software task will require that no planned
value credit can be taken until all work is completed and tested. These
completion criteria are known as quality gates.

2. The Actual Cost or Actual Cost of Work Performed (ACWP)
gauge shows the cumulative actual cost incurred on the project to
date. Estimate at Completion (EAC) is the maximum value on this
gauge, which represents the current best estimate for total cost of
the project. Note that EAC might have a different value from BAC
in the above Earned Value gauge because better total cost estimates
can be made as the project progresses. Therefore EAC may change
for different reporting periods.

Note: By comparing cumulative actual cost (ACWP) with the
cumulative Earned Value (BWCP) in the above Earned Value gauge,
you can estimate how your project is performing against its budget.
This shows how well the project is turning actual costs (ACWP) into
progress (BCWP). Although the scales for this gauge and the Earned
Value gauge are the same, cumulative actual cost can be compared
with BAC to determine project status toward overrunning the origi-
nal budget, and with EAC to determine project status toward over-
running the current estimated total cost.

In the example shown in Figure 8.3, it would indicate that the
project is overrunning its budget.

3. The Elapsed Time gauge shows the end date for the current
reporting period.

4. The Cost Performance Index (CPI) gauge shows how effi-
ciently the project team has turned costs into progress to date. It is
calculated by dividing cumulative Earned Value by the cumulative
actual cost (BCWP/ACWP). It is a historic measure of average pro-
ductivity over the life of the project.

Note: CPI represents how much work was performed for each
dollar spent, or ‘‘bang for the buck.’’ When CPI has a value of 1.0,
the project team is delivering a dollar of planned work for each dollar
of cost. When CPI is less than 1.0, there is the potential for a produc-
tivity problem. For example, a CPI of .82 means that you got 82 cents

222 Chapter 8

worth of planned work for each dollar you paid in cost. A CPI of less
than 1.0 may indicate that the project team didn’t perform as well
as expected or that the original budget was too aggressive for the
amount of work to be performed.

5. The To-Complete Performance Index (TCPI) gauge shows
the future projection of the average productivity needed to complete
the project within an estimated budget. It is calculated by dividing
the work remaining by the current estimate of remaining cost
((BAC – BCWP)/(EAC – ACWP)).

Note: The TCPI gauge must be used in conjunction with the
CPI gauge. TCPI should be compared to CPI to determine how realis-
tic the most recent estimated total cost (EAC) is for the project. Note
that CPI measures the average historic productivity to date. If TCPI
is greater than CPI, then the project team is anticipating an efficiency
improvement to make it more productive. The estimated total cost of
the project (EAC) can therefore be calibrated by comparing TCPI to
CPI. Always question claims of future productivity improvement that
result in a 20 percent or greater increase in TCPI over CPI in order
to ensure they are based on sound reasoning. This is especially true
of ‘‘silver bullets’’ like new tools, languages, or methodologies, which
may actually decrease productivity due to training and start-up costs.
The redline on this gauge should be about 20 percent above the cur-
rent value of the CPI gauge to show the relationship and warning
level between the two gauges.

6. The Abba* Chart, also known as a Total Program Perfor-
mance Efficiency chart, is composed of four different performance
indicators showing trends in historic and projected efficiency to date.
The indicators are:

• TCPI (To-Complete Performance Index) (Gauge 5)
• Completion Efficiency (CE) is a ratio calculated by dividing

BAC by EAC to estimate the productivity required to com-
plete the project within a projected total cost (EAC)

• CPI Cost Perfromance Index (Gauge 4).
• Monthly CPI is a ratio calculated by dividing the monthly

Earned Value by the monthly actual cost (as opposed to cu-
mulative values for the CPI calculation).

* Named for Wayne Abba of the Department of Defense.

Management Dashboards 223

The data for the graphs are also derived from the cost/schedule data
contained in the Excel workbook.

7. Quality Gate Task Status this Month shows the completion
status of tasks during the current reporting period. A quality gate
is a predefined completion criterion for a task. The criterion must
be an objective yes/no indicator that shows a task has been com-
pleted (see discussion on Gauge 1 above). The indicators are:

• Total Due is the total number of tasks scheduled for comple-
tion during this reporting period plus any overdue tasks
from previous periods. This indicates the total quantity of
work required for the project to keep pace with the schedule.

• Completed Late is the number of tasks completed late dur-
ing this reporting period. This number includes those tasks
scheduled for this period that were completed late, as well
as any overdue tasks from previous periods that were com-
pleted in this period. The Completed Late indicates how
well the project is completing work, even if it is late ac-
cording to the original schedule.

• Completed On Time is the number of tasks originally sched-
uled for completion during this reporting period that were
completed by their original scheduled due date. This num-
ber indicates how well the project is keeping up with sched-
uled work.

• Total Overdue is the total number of tasks for all previous
reporting periods that are overdue by the end of the current
reporting period. This is an indicator of the quantity of work
needed to get the project back on schedule.

Note: The total number of tasks completed in this reporting
period is the sum of Completed On Time and Completed Late. Total
Overdue then is equal to Total Due minus Completed on Time and
Completed Late.

The data for Gauges 7 and 8 are taken from the portion of the
worksheet illustrated in Table 8.3.

8. The Quality Gate Tasks Completed graph shows the cumu-
lative number of tasks completed by the end of each reporting period
to date plotted with the cumulative number of tasks scheduled for
completion.

Note: If the number of tasks completed falls below the number

224 Chapter 8

T
ab

le
8.

3
Q

u
al

it
y

G
at

e
T

as
k

D
at

a

Q
u

al
it

y
G

at
e

T
as

ks

T
ot

al
du

e
th

is
pe

ri
od

C
u

m
u

la
ti

ve
R

ep
or

ti
n

g
pe

ri
od

da
ta

(#
sc

h
ed

u
le

d
�

N
o.

co
m

pl
et

ed
n

o.
ov

er
du

e
R

ep
or

ti
n

g
P

er
io

d
N

o.
sc

h
ed

u
le

d
#

ov
er

du
e

fr
om

on
ti

m
e

N
o.

co
m

pl
et

ed
at

en
d

of
pe

ri
od

n
o.

en
d

da
te

th
is

pe
ri

od
la

st
pe

ri
od

)
th

is
pe

ri
od

la
te

th
is

pe
ri

od
pe

ri
od

1
9/

5
/9

6
5

5
3

1
1

2
10

/5
/9

6
7

8
2

1
5

3
11

/5
/9

6
7

12
2

2
8

4
12

/5
/9

6
6

14
3

3
8

5
1/

5
/9

7
10

18
18

6
2/

5
/9

7
12

30
30

7
3/

5
/9

7
15

45
45

8
4/

5
/9

7
13

58
58

9
5/

5
/9

7
11

69
69

10
6/

5
/9

7
16

85
85

11
7/

5
/9

7
12

97
97

12
8/

5/
97

5
10

2
10

2

Management Dashboards 225

planned, then the horizontal distance on the time axis gives an idea
of the current schedule slip to date.

8.4.2 Change

9. CM (Configuration Management) Churn per Month is calculated
by taking the number of items under configuration control (baselined
items) that have been modified and rechecked into the configuration
management system over the last reporting period, and dividing it
by the total number of baselined items in the system at the end of the
period. It is expressed as a percentage. A modified baselined items is
one that was previously in the system, but was reviewed sometime
later and modified or replaced.

The worksheet data from which the CM Churn per Month for
Figure 8.3 is calculated is shown in Table 8.4. It also the source for
the data for Gauge 10.

Note: This gauge serves as an indicator of the architectural
soundness of the system. If the rate of ‘‘churn’’ begins to approach the
two percent per month level, this shows a lot of rework is going on,

Table 8.4 Configuration Management Data

Configuration Items

No. modifiedReporting period data
Total no. in and rechecked

Reporting Period CM system at into CM
period no. end date end of period this period

1 9/5/96 50 1
2 10/5/96 52 0
3 11/5/96 60 3
4 12/5/96 65 2
5 1/5/97
6 2/5/97
7 3/5/97
8 4/5/97
9 5/5/97

10 6/5/97
11 7/5/97
12 8/5/97

226 Chapter 8

which could point to deeper problems in the project. A high churn
rate may mean that the original design was not robust enough. It
could also be a symptom of changing requirements (see Gauge 10),
which could indicate the project is drifting towards disaster.

10. Requirements Change Per Month is calculated by divid-
ing the number of new, changed, or deleted requirements specified
in this reporting period by the total number of requirements at the
end of this period. It is expressed as a percentage. Typical projects
experience a requirements change of one percent per month.

Note: Some requirements growth is to be expected, particularly
on large projects. However, a high rate of requirements change can
indicate the customer is not sure of what is wanted, or the original
requirements definition was poor. A high rate often predicts disaster
for software-intensive projects.

8.4.3 Staff

11. Voluntary Turnover per Month is calculated by dividing the
number of staff leaving during this reporting period by the number
of staff at the beginning of this period. It is expressed as a percent-
age. The target range is less than 2 percent per month. A person
can leave the project in a number of ways, such as by quitting the
organization or requesting reassignment to another project.

Note: Turnover is an important measure for risk assessment.
Every project lasting six months or longer should expect and prepare
for some staff turnover. Each project member who leaves the team
causes a productivity drop and schedule disruption. Bringing on new
team members, regardless of their skills and experience, does not nec-
essarily solve the problem; they require time to become familiar with
the project and processes. In addition, a productive team member will
usually have to devote time to orient the new hire, thus taking away
additional resources from the project. Appropriate allowances should
be included in the productivity resource estimates to allow for staff
turnover.

The basic data for Gauge 11 of Figure 8.3 are derived from this
extract from the worksheet, and is illustrated in Table 8.5.

12. Overtime per Month is calculated by dividing the over-
time hours by the base working hours for all project staff in this
reporting period. It is expressed as a percentage. The target range
is less than 10 percent. When the overtime rate approaches 20 per-

Management Dashboards 227

Table 8.5 Staffing Data

Voluntary turnover

No. of No. staffReporting period data
staff at leaving

Reporting Period beginning voluntarily
period no. end date of period this period

1 9/5/96 75 5
2 10/5/96 70 2
3 11/5/96 80 1
4 12/5/96 85 2
5 1/5/97
6 2/5/97
7 3/5/97
8 4/5/97
9 5/5/97

10 6/5/97
11 7/5/97
12 8/5/97

cent, the ability of the staff to respond effectively to crises suffers
significantly.

The data for this gauge is also derived from the worksheet, and
that portion of the data in the worksheet is illustrated in Table 8.6.

8.4.4 Risk

13. The Risk Exposure chart shows each risk plotted by its cost
consequence and probability. Each data point in this chart is associ-
ated with a specific risk, and would have an identifier associated
with it. The probability is expressed in terms of occurrences over the
life of the project. The regions on the graph show where risks fall
into areas of low-, moderate-, or high-risk exposure. Clearly, high
probability–high consequence risks indicate high-risk exposure,
while low probability–low consequence risks indicate low-risk expo-
sure.

Note: The SPMN has also developed another shareware pro-
gram called Risk Radar [10]. Risk Radar is a risk management data-
base, created in Microsoft Access, that helps project managers iden-

228 Chapter 8

Table 8.6 Overtime Hours

Overtime hours
Reporting Period Data

Base no. No. overtime
Reporting Period staff hours staff hours
period no. end date this period this period

1 9/5/96 13,000 1,000
2 10/5/96 13,500 2,000
3 11/5/96 13,500 3,375
4 12/5/96 13,200 500
5 1/5/97
6 2/5/97
7 3/5/97
8 4/5/97
9 5/5/97

10 6/5/97
11 7/5/97
12 8/5/97

tify, prioritize, and communicate project risks in a flexible and easy-
to-use form. Risk Radar provides standard database functions to add
and delete risks, together with specialized functions for prioritizing
and retiring project risks. Each risk can have a user-defined risk
management plan and a log of historical events. A set of standard
short- and long-form reports and viewgraphs can be easily generated
to share project risk information with all members of the development
team. The number of risks in each probability/impact category by
time frame can be displayed graphically, allowing the user to visual-
ize risk priorities and easily uncover increasing levels of detail on
specific risks. Risk Radar also provides flexibility in prioritizing risks
through automatic sorting and risk-specific movement functions for
priority ranking.

The features of the Risk Radar include:

• A Set Up Project screen allows the project leader to set project
specific information, such as the title of the project, in one
place

• An Edit Risks Long Form screen which allows the project
leader to add new risks, modify existing risks, delete risks,

Management Dashboards 229

and retire risks. The screen is called a long form because it
requires more than one computer screen to view it all.

• An Edit Risks Short Form screen which allows the project
leader to present all of the information for a risk on a single
screen without scrolling. This means there is less room for
field descriptions.

• A View Risks screen which is a graphical display of risks by
risk exposure category and impact time frame.

• A View Retired Risks screen which provides a simple table
of all risks that are no longer considered a threat, and have
been retired from active risk management. This information
might be useful in formulating new risks and for project
postmortems.

• A Prioritize Risks screen which provides a means for prior-
itizing risks, using automatic sorting buttons, manually
moving risks in the priority ranking, and renumbering the
priority rank of all risks.

• A Reports screen which contains a set of predefined reports
in both long-form (one risk per page) and short-form (one
risk per line) formats that can be generated by clicking a
button.

Risk Radar data can be exported into an Excel spreadsheet. Excel
spreadsheets provide the basic inputs for the control Panel. Conse-
quently, the data from the Risk Radar can be used directly in the
control Panel.

14. Risk Reserve shows the total cost risk exposure and sched-
ule risk exposure compared to the current cost and time risk reserves
for the project. Risk exposure for a risk is calculated by multiplying
the probability times its potential negative consequence. Although
the consequences (and therefore the risk exposure) for different risks
are not necessarily independent, a first approximation to the total
cost risk exposure of the project can be made by adding together the
individual cost risk exposures for all risks. The same approximation
to total schedule risk exposure in time can be made by adding to-
gether the individual schedule risk exposures for all risks.

The data for this gauge is also derived from the worksheet, and
that portion of the data in the worksheet is illustrated in Table 8.7.

Note: Risk reserves for cost and schedule should be established
at the beginning of the project to deal with unforeseen problems. The

230 Chapter 8

Table 8.7 Risk Reserve Data

Risk reserve
Reporting period data

Total Total
Reporting Period budget risk schedule risk
period no. end date reserve ($) reserve (days)

1 9/5/96 30,000 20
2 10/5/96 28,000 19
3 11/5/96 28,000 19
4 12/5/96 28,000 18
5 1/5/97
6 2/5/97
7 3/5/97
8 4/5/97
9 5/5/97

10 6/5/97
11 7/5/97
12 8/5/97

cost and time risk reserve for a project will change over time as some
of these reserves are used to mitigate the effects of risks that actually
occur and affect the project.

15. The Metrics Problem indicator shows that management
has received either a warning or bad news about some of the metrics
on the project.

16. The Anonymous Channel Unresolved Warning indicator
shows that project management has received either a warning or
bad news about the actual status of the project.

Note: An open-project culture in which reporting bad news is
encouraged is conducive to a healthy project. Warnings from anony-
mous or known project personnel should be welcomed and tracked.

8.4.5 Quality

17. Defects by Activity displays the number of detected defects
open (i.e., yet to be fixed) and the number of defects closed in each
phase of the project. Defects are problems that, if not removed, could
cause a program to fail or to produce incorrect results. Defects are

Management Dashboards 231

generally prioritized by severity level, with those labeled 1 being the
most serious.

Note: The quality indicators on this chart help you answer the
question, ‘‘What is the quality of the product right now?’’

In the example illustrated by the control panel in Figure 8.3,
the histogram depicts requirements, design, code, and test defects
that have been open and closed. The raw data for the histogram is
also contained in the worksheet and is illustrated in Table 8.8.

The shareware software provided by the SPMN allows the user
to add or delete gauges as the user sees fit. Consequently, if there
are other indicators that a project leader would like to include, they
can be added. Indicators of potential use from earlier chapters are:

Pareto Chart Analysis—see Chapter 7
STAM—see Chapter 7

• Negligence ratio
• Evaluation ratio
• Prevention ratio

Number of open bugs per unit of time—see Chapter 4
Number of closed bugs—see Chapter 4
Software Specification Metrics—see Chapter 5

• Completeness
• Readability
• Accuracy
• Flesch Reading Grade Level

Predicted Failures and Failure Rates—see Chapter 6

• Jelinski-Moranda Model Estimates
• Lipow Model Estimates
• Multinomial Model Estimates
• Reliability Growth Estimates
• Data Domain Model Estimates

8.5 CHAPTER SUMMARY

Software development is an abstract activity typically carried out
by individuals that work best on their own. However, successful soft-
ware products require documentation, testing, quality assurance

232 Chapter 8

T
ab

le
8.

8
D

ef
ec

t
D

at
a

by
A

ct
iv

it
y

an
d

C
at

eg
or

y

R
ep

or
ti

n
g

pe
ri

od
D

ef
ec

ts
by

ac
ti

vi
ty

da
ta

R
eq

u
ir

em
en

t
R

eq
u

ir
em

en
t

D
es

ig
n

D
es

ig
n

C
od

in
g

C
od

in
g

T
es

t
T

es
t

R
ep

or
ti

n
g

P
er

io
d

de
fe

ct
s

de
fe

ct
s

de
fe

ct
s

de
fe

ct
s

de
fe

ct
s

de
fe

ct
s

de
fe

ct
s

de
fe

ct
s

pe
ri

od
n

o.
en

d
da

te
op

en
cl

os
ed

op
en

cl
os

ed
op

en
op

en
op

en
cl

os
ed

1
9

/5
/9

6
20

10
12

4
2

2
1

0
2

10
/5

/9
6

22
5

12
6

8
3

5
6

3
11

/5
/9

6
10

15
15

4
12

3
4

2
4

12
/5

/9
6

5
20

8
12

25
10

8
5

5
1

/5
/9

7
6

2
/5

/9
7

7
3

/5
/9

7
8

4
/5

/9
7

9
5

/5
/9

7
10

6
/5

/9
7

11
7

/5
/9

7
12

8/
5/

97

Management Dashboards 233

and proper understanding of customer requirements. This requires
team work and an engineering approach to software development.
MIO is still struggling in its effort to climb the maturity ladder but
it has determined both a starting point and a direction. In order to
improve software products and development processes, manage-
ment needs both. Metrics and quantitative information play a cru-
cial role in supporting improvement efforts. The MIO Software De-
velopment Management Dashboard is playing the role of a
management compass. Our recommendations to software managers
interested in meeting the competitive challenge are simple:

Find where you are,
determine where you want to go,

and use a compass to get there

REFERENCES

1. Grady, R. B., (1992), Practical Software Metrics for Project Manage-
ment and Process Improvement, Englewood Cliffs, NJ: Prentice Hall.

2. Humphrey, W. (1989), Managing the Software Process, New York: Ad-
dison Wesley.

3. IEEE 1044.1, (1995), Guide to IEEE Standard for Classification for
Software Anomalies, IEEE Standards Department, Piscataway, NJ
08855-1331.

4. Kenett, R. S., (1989), ‘‘Managing a Continuous Improvement of the
Software Development Process,’’ Proceedings of the Eight IMPRO Con-
ference, Atlanta.

5. Kenett, R. S., (1994), ‘‘Assessing Software Development and Inspec-
tion Processes,’’ Quality Progress, October, pp. 109–112, with correc-
tions in February, 1995.

6. Kenett, R. S., (1994), ‘‘Making Sense Out of Two Pareto Charts,’’ Qual-
ity Progress, May, pp. 71–73.

7. Paulk, M. C., et al., (1995), The Capability Maturity Model: Guidelines
for Improving the Software Process, New York: Addison-Wesley.

8. ‘‘Process Maturity Profile of the Software Community 1997 Update,’’
Software Engineering Measurement and Analysis Team, Software En-
gineering Institute, Carnegie Mellon University, October 1997.

9. Department of Defense, Software Program Managers Network, The
Program Manager’s Guide to Software Acquisition Best Practices,
April 1997.

10. Department of Defense, Software Program Managers Network, Risk
Radar User’s Guide, Version 1.1, March 1998.

Author Index

Arthur, J. D., 19 Ferguson, P. A., 168, 176
Fisher, M. J., 17

Baker, E. R., 17 Flesch, R., 150, 153
Basili, V., 94, 99, 206 Fuchs, C., 124, 127
Binder, R. W., 172, 177
Bliss, R., 95 Garcia, S. M., 94

Godfrey, A. B., 44, 54Boehm, B. W., 179, 205
Bowen, T. P., 19 Government Accounting Office

(GAO), 25, 40, 54Brown, J. R., 172, 177
Bryan, W. E., 17 Grady, R. B., 233

Grahm, D., 205Bush, M., 18, 94

Chrissis, M. B., 18, 94 Herbsleb, J., 19
Hevner, A., 200, 206Crawford-Hines, S., 199, 206

Crosby, P., 98 Humphrey, W, 18, 19, 54, 66,
94, 233Curtis, W., 94

Hungerford, B., 206
Daskalantonakis, M. K., 94
De Marco, T., 86 Iannino, A., 164, 176

IEEE StandardsDeming, W. E., 24, 98
Department of Defense (DoD), 729, 160, 176

730.1, 20541, 180
DoD-STD-2167A, 181, 205 982.1, 100, 102, 127, 132,

139, 152MIL-M-38784A, 151, 153
MIL-STD-498, 181, 205 1044, 102, 233

1045, 100, 127MIL-STD-1521B, 205
MIL-STD-1679, 161, 176 Ingrassia, F. S., 18, 100, 127

ISO, 46, 55, 57, 97Dion, R., 18, 94
Dobbins, J., 54 ISO 9000-3, 46, 55, 56

235

236 Author Index

[ISO] Nance, R. E., 19
Nelson, E., 172, 177ISO 9001, 46, 55, 56

ISO 9126, 130, 131, 152 Neufelder, A., 167, 176
ISO 12207, 46, 55, 57, 181, 205

Okumuto, K., 164, 176
Onoma, A., 157, 176

Jelinski, Z., 161, 164, 176 Paulk, M. C., 18, 94, 233
Johnson, P., 206 Pfleeger, S. L., 153
Jones, C. T., 41, 54, 86, 94 Pollak, M., 167, 176
Juran, J., 24, 29, 44, 45, 51, 54, Porter, A., 199, 205

58, 98, 190 Pressman, R. S., 152
Price, F., 191, 205
Putnam, L. H., 94

Kaaniche, M., 167, 177
Quann, E., 95Kanoun, K., 167, 177

Kenett, Ron S., 54, 124, 127, Rubin, H., 95
167, 172, 175, 176, 177,
190, 197, 205, 233 Schulmeyer, G., 1, 18, 54

Sims, D., 19Kitchenham, B., 153
Kitson, D. H., 18 Siy, H., 205

Snyder, T. R., 18, 94Knuth, D., 191, 205
Koch, F., 74 Sweet, W. L., 18, 94
Koenig, S., 54, 175

Tartalja, I., 172, 177Kubler-Ross, E., 36, 54
Toman, C., 205
Tsai, J. T., 19

Laprie, J-C, 167, 177 Verall, B., 176
Lipow, M., 164, 166, 172, 176, Votta, L., 205

177
Wall, J. K., 168, 176Littlewood, B., 176
Weber, C. V., 18, 94
Wigle, G. B., 19
Willis, R. R., 18, 94McCabe, T. J., 18, 54
Wood, A., 161, 176McManus, J. I., 1

Moranda, P., 161, 164, 176 Yacobellis, R. H., 18, 94
Milutinovic, V., 172, 177 Yamura, T., 157, 176
Mockus, A., 205
Musa, J., 164, 167, 176 Zacks, S., 124, 127, 172, 177

Zubrow, D., 19Myers, W., 94

Subject Index

AT&T Network Software Cen- anonymous channel unre-
solved warning, 230ter, 40

configuration management
churn per month, 225Bell Laboratories, 24, 166 cost performance index (CPI),Boeing, 47 221

defects by activity, 223
earned value (BCWP), 218Capability Maturity Model

(CMM), 7, 41, 44, 58, 75, elapsed time gauge, 218
overtime per month, 226, 22897

characteristics of maturity quality gates completed, 223
quality gate status, 223levels, 24, 58

Key Process Area (KPA), 57, requirements change per
month, 22661, 75

maturity levels defined, 7, risk exposure, 227
risk radar, 227214

primary focus of KPAs, 62, risk reserve, 227
to-complete performance in-63, 214

process maturity distribution, dex (TCPI), 222
voluntary turnover per9, 48, 213

Configuration management (see month, 226
also software configuration
management), 2, 6, 26, 212, Development methodologies

CASE tools, 87219
Control panel, 216, 219 establishing methodologies, 6,

7, 11, 13, 49Abba chart, 222
actual cost of work per- software development folders,

11, 16formed, 220, 221

237

238 Subject Index

Digital Equipment Corporation, [Measures and metrics]
cyclomatic complexity, 13,150, 153

132, 134
defect density, 14, 44, 101,FURPS, 130

132, 160
defects, 102, 155General Motors, 150, 153

Goal-Question-Metric, 99, 127 definitions, 98
documentation readability

metrics, 138, 144, 146, 149Hawaii, University of, 198
Hitachi Software Engineering duration, 102

effort, 102Company, 157, 172
Hewlett Packard, 130 fault density, 129, 132, 134,

160, 174Hughes Aircraft Company
Ground Systems Group, 10, Flesch Readability Index,

15040
Flesch Reading Grade Level

Metric, 150IBM, 40
Indian industry, 9, 10, 89 Kincaid Overall Grade Level

Metric, 151
Kiviat diagrams, 88, 193Japanese industry, 9, 89, 157

Joint Group on Systems Engi- measure, 14, 98
metric, 14, 98neering, 132
measurement, 14, 98
Pareto analysis, 34, 190, 194,Logicon, 139

Logos International, 10 197
passive sentences metric, 151Lucent Technologies, 198
problem report tracking, 122,

132, 159M-test, 173, 193
Maryland, University of, 99, requirements traceability,

132, 134198
MASH, 21 Return on Investment (ROI),

33, 44McDonnell Douglas Astronau-
tics Company, 161 software maturity index, 132,

134Measures and metrics
checklists, 187 software size, 101, 121

software specifications met-checksheets, 187
control charts, 123, 126 rics, 101, 137

staffing profiles, 119cost, 102
customer satisfaction, MIO, Ltd., case study, 207, 208,

213, 233103

Subject Index 239

Norfolk and Western Railroad, [Process measurement program]
impact factors, 10547
implementation goal identifi-

cation, 107, 109Plan-do-check-act, 24
Process improvement, 24, 42, implementation steps, 107

reasons for implementing, 99,85
change management, 33, 42 108, 109

reporting and publishing re-estimating process improve-
ment project costs and sults, 117

roles and responsibilities,schedules, 82
improvement process, 27, 29, 112

sponsors, 11084
maintaining improvement, 37 training and education for

measurement, 112managing improvement proj-
ects, 36, 91 Process Strategies, Inc., 74

Productivity, effects ofprocess improvement project
critical success factors, 76, facilities, 86

management policies, 90176
process improvement project personnel resources, 88

software tools, 87risk factors, 79
process improvement propos- Program Checking Lists, 159,

173als, 32, 75
process management princi-

ples, 42 Quality, 1, 12
cost of, 31, 33process problem recognition,

30 Council, 27, 75
Improvement Teams, 27, 28,ranking process improvement

proposals, 32, 80 33, 84
Journey, 29selecting improvement proj-

ects, 32 Management, 24, 41
Strategic Quality Planning,senior management involve-

ment, 41, 83 44, 46, 56
Quality Progress Diagram,strategic planning for process

improvement, 44 173
structured diagnosis, 33

Process measurement program Raytheon Equipment Division,
40attributes, 103

effectiveness, 103
identification and definition Software configuration manage-

ment (SCM), 6, 8, 26of target metrics, 105, 114

240 Subject Index

Software Development Manage- [Software quality]
effects of software operationment Dashboard (SDMD–

see also control panel), 207, on, 10
management responsibility213, 214, 216, 219

Software Engineering Institute for, 2
organizational responsibility(SEI), 7, 58, 97

Software Engineering Process for, 2
quality evaluation, 4, 13, 16,Group (SEPG), 12, 27, 59,

75, 85, 93, 101, 113 131
Software Quality AssuranceSoftware process

evolution of software develop- (SQA), 2, 8, 14, 65
Software Quality Programment, 49

unique characteristics of de- (SQP), 3, 5, 6, 7, 11, 17
Software Quality Programvelopment and mainte-

nance processes, 51 Plan, 3, 155
Software reliability, 155, 160Software process assessments

assessment participants definitions, 160
estimation and tracking, 161,briefing, 69, 208

confidentiality principle, 69 167, 172
Fractional Factorial Array,171estimated participant effort,

68 Full Factorial Array, 171
Jelinski-Moranda ‘‘De-Eutro-functional area representa-

tives (FARs), 68, 210 phication’’ Model, 161, 164
Lipow Extension Model, 164,Maturity Questionnaire, 67,

211 165
model free approach, 167on-site period, 70, 208

project leaders, 67 models, 161
Pragmatic Software Reliabil-project mix, 67

Software Process Improvement ity Estimation, 168
Shiryayev-Roberts proce-Capability dEtermination

(SPICE), 55, 57 dures, 167
Software requirements, 21Software Productivity Re-

search, Inc., 41 requirements defects, 21
requirements defintion pro-Software Program Managers

Network (SPMN), 217 cess, 22, 139
requirements management,Software quality

definition, 2, 4, 15, 21, 22 4, 5
requirements-related errors,effects of software mainte-

nance on, 10 22

Subject Index 241

Software reviews Software Trouble Assessment
Matrix (STAM), 179, 200,differences between

walkthroughs and inspec- 203
evaluation ratio, 200, 204tions, 185

limitations of the inspection negligence ratio, 200, 204
prevention ratio, 200, 204process, 182, 187

management reviews, 180 Statistical Process Control, 24,
124software inspections, 180,

182, 184, 197 Lower Control Limit (LCL),
124, 126technical reviews, 180

walkthroughs, 180, 182, 196 Upper Control Limit (UCL),
124, 126Software Testing, 155, 179

acceptance testing, 158
‘‘black box’’ testing, 157 TEX, 191, 194

Total Quality Management,integration testing, 156,
158 24

TRW, 86system testing, 156, 158
unit level testing, 156, 158
‘‘white box’’ testing, 156 Western Electric, 11

	Series Introduction
	Foreword
	Preface
	Contents
	A Framework for Software Quality*
	Basics of Quality Management and Continuous Process Improvement
	ISO 9000, SEI Capability Maturity Model (CMM), and Continuous Software Process Improvement
	Software Measurements Programs: Strategies and Implementation Issues
	Quality of Software Products and Documents
	Software Reliability Control
	Software Review and Inspection Processes
	Software Development Management Dashboards
	Author Index
	Subject Index

	Bottom:
	Right:

