

Research Memorandum 09/2016 23 September 2016

FINANCIAL CONDITIONS INDEXES FOR HONG KONG

Key points:

- . We construct financial conditions indexes (FCIs) for Hong Kong, so as to track and draw macro-financial implications from Hong Kong's overall financial conditions. Two compilation approaches are used to cross check the robustness of the estimated financial conditions.
- . The FCIs tightened materially during the Asian Financial Crisis and the Global Financial Crisis, and loosened subsequent to the implementation of quantitative easing in the US. Due to heightened global financial volatility, the FCIs tightened again during the second half of 2015 and the first half of 2016.
- Decomposition analysis shows that the sharp plunges of the FCIs during crisis periods were mainly driven by movements in domestic asset prices and volatilities, reflecting the ability of the asset markets to signal sharp changes in future economic activity. During tranquil periods, the dynamics of the FCIs were driven mainly by domestic property prices, reflecting the strong influence of the property market on the real economy.
- Statistical tests show that the FCIs can forecast economic activity well. In particular, pseudo-out-of-sample tests indicate that the FCIs can forecast real GDP growth up to two quarters ahead. Hence, the FCIs can complement our macro-financial surveillance toolkits and aid future research involving macro-financial interactions.

Prepared by : Simon Chan, Tommy Wu, Ken Wong and Michael Cheng * Economic Research Division, Research Department Hong Kong Monetary Authority

The views and analysis expressed in this paper are those of the authors, and do not necessarily represent the views of the Hong Kong Monetary Authority.

The authors would like to thank Lillian Cheung and Frank Leung for their useful comments, and Gordon Wong for his excellent research assistance.

Many financial variables are known to influence and have predictive power on economic activities. For example, asset prices can exert collateral and wealth effects on consumption, while yield spreads were found to have some predictive power on future economic activity (Estrella (2005)). Given the importance of the financial sector in the Hong Kong economy, it would be useful to assess and draw economic implications from Hong Kong's overall financial conditions. In this research memorandum, we compile the financial condition indexes (FCIs) for Hong Kong, which take into account a broader set of financial variables (e.g. Osorio et al. (2011), IMF (2015)) than traditional monetary condition indexes that comprise interest rate and exchange rate only.

The literature has proposed a few econometric techniques to compile FCIs. Among these, most studies use the weighted-sum approach and/or the principal component (PC) approach, with the former weighing the financial variables by its impact on real activity, while the latter weighs through finding the common component (i.e. principal component) of the selected set of financial variables. Given that different techniques have their pros and cons, we follow IMF (2015) and Osorio et al. (2011) in using both techniques to construct the FCIs for Hong Kong, so as to cross check the robustness of the estimated financial conditions indexes.

We find that the FCIs with both approaches broadly share the same pattern, tightening materially during the Asian Financial Crisis (AFC) and the Global Financial Crisis (GFC), and loosening after the implementation of the quantitative easing in the US. In the face of heightened global financial market volatility, the FCIs tightened again during 2015H2–2016H1. Decomposition analysis shows that the sharp plunges of the FCIs during crisis periods were mainly driven by property prices, stock prices and stock market volatilities. This probably reflects the ability of the asset markets to signal sharp changes in future economic activity. During tranquil periods, the dynamics of the FCIs were driven mainly by property prices, manifesting the strong influence of the property market on the real economy.

Both in-sample and pseudo-out-of-sample tests show that the FCIs can track and forecast real GDP growth well. In particular, pseudo-out-of-sample forecasting power tests indicate that the FCIs can perform better than simple statistical models in forecasting Hong Kong's real GDP growth up to two quarters

ahead. Thus, the FCIs could aid our macro-financial surveillance of the Hong Kong economy, by providing a quick assessment of the impact of major financial disturbances on the real economy.

The rest of the paper is organised as follows. Section II describes the methodology used to compile the FCIs for Hong Kong. Section III analyses and compares the dynamics of the FCIs. Section IV assesses the forecasting power of the FCIs on real GDP growth. The final section concludes.

II. METHODOLOGY

Following IMF (2015) and Osorio et al. (2011), we use both the weighted-sum approach based on vector auto-regression (VAR) and the PC approach to construct the FCIs for Hong Kong. These two alternative approaches allow us to cross check the robustness and reliability of the estimate for the development of Hong Kong's financial conditions over time.

On the weighted sum approach, we first estimate a VAR:

$$X_{t} = A_{0} + \sum_{i=1}^{2} A_{i} X_{t-i} + \sum_{i=1}^{2} B_{i} Y_{t-i}^{*} + \varepsilon_{t}$$

where X_t is a vector of endogenous variables, A_0 and A_i are vectors of coefficients, and ε_t is a vector of error terms. The list of endogenous variables include Hong Kong's quarter-on-quarter real GDP growth, CPI inflation, and the following financial variables which are broadly representative of the major aspects of Hong Kong's financial environment: 3-month HIBOR (in guarterly changes), residential property prices (in quarter-on-quarter growth rate), the Hang Seng Index (HSI) (in quarter-on-quarter growth rate), volatility of the Hang Seng Index (in Hong Kong Dollar real effective exchange rate (REER) level), (in quarter-on-quarter growth rate), Hong Kong Dollar domestic loans (in quarter-on-quarter growth rate), and the spread of the 3-month HIBOR over the yield of the 3-month Exchange Fund Bill (i.e. measure of credit risk similar to the US TED spread, expressed in level). Y_t^* , which is the weighted GDP of Hong Kong's trading partners (in quarter-on-quarter growth rate), is also included as an exogenous variable in the VAR. Using a sample period of 1992Q1–2016Q2 to estimate the VAR, we construct the financial conditions index as follows:

$$FCI_t^{WS} = \sum_{j=1}^n w_j (x_{j,t} - \bar{x}_j)$$

where w_j is the weight of the financial variable $x_{j,t}$ in the financial conditions index FCI_t^{WS} , and \bar{x}_j is the sample average of the financial variable $x_{j,t}$. The weight w_j is set as the accumulated responses of real GDP growth within four quarters to a one-unit shock to the financial variable $x_{j,t}$. To avoid any dependence of the estimated weight on the ordering of the variables in the VAR, the generalised impulse response scheme (Pesaran and Shin 1998) is used to measure the impact on real GDP growth from each financial variables.

Chart 1 illustrates the impulse responses of real GDP growth to individual variables, all of which have the expected signs. For example, a positive shock to the interest rate spread or stock price volatility (as indicators of risk) would dampen real GDP growth, while a positive shock to stock prices or residential property prices would support real GDP growth.

On the PC approach, given its ability in extracting information from a large set of variables, we expand the list of the component financial variables to include also indicators such as term spreads, credit spreads, and asset quality (see the full list of financial variables in the Appendix), so as to broaden the scope of information captured.

We follow Hatzius et al. (2010) and Wacker et al. (2014) by first transforming the component financial variables to ensure stationarity, followed by standardisation of the resulting series. We then purge the financial variables from the influences of Hong Kong's real GDP growth and CPI inflation, such that the extracted principal component collects only exogenous information from the financial variables and not endogenous feedback from the real economy. In particular, we set up the following regression:

$$X_{i,t} = B_i(L)Y_t + \epsilon_{i,t}$$

where $X_{i,t}$ is a financial variable, Y_t is a vector of Hong Kong's real GDP growth and CPI inflation, and $\epsilon_{i,t}$ is the purged financial variable. *L* denotes time lags and is set to be two quarters. We then decompose $\epsilon_{i,t}$ as follows:

$$\epsilon_{i,t} = \lambda_i' F C I_t^{PC} + u_{i,t}$$

where FCI_t^{PC} is the constructed financial condition index, λ'_i is the factor loading of the financial variables in the index, and $u_{i,t}$ is the idiosyncratic component of $\epsilon_{i,t}$ which is assumed to be uncorrelated across the financial variables. Similar to Hatzius et al. (2010), Wacker et al. (2014), and Osorio et al. (2011), we estimate FCI_t^{PC} by taking the first principal component of $\epsilon_{i,t}$.

III. ANALYSIS OF THE INDEXES

In this section, we examine the dynamics of the estimated FCIs and the contribution of the underlying component variables to the changes in the FCIs. Chart 2 shows the constructed FCIs under the two approaches, with a higher value of the FCI representing a loosening of financial conditions, while a lower value indicates a tightening of financial conditions. To facilitate comparison, the FCIs are normalised with its standard deviation being equal to one. Hong Kong's real GDP growth is also shown in the chart for reference. From the chart, it can be seen that FCI_t^{WS} and FCI_t^{PC} broadly share the same pattern. In particular, both indexes indicate, as expected, a material tightening of financial conditions during the AFC and the GFC, with the magnitude of the tightening being broadly similar in both crises. Both FCIs also show that financial conditions loosened after the implementation of quantitative easing in the US in 2009Q1, before tightening momentarily in late 2011 amid the deepening of the European sovereign debt crisis. Financial conditions then became loose again in the following years until 2015Q3, when global financial volatilities picked up amid concerns about the US rate hike and the change to the RMB fixing mechanism.

Chart 2: FCIs and real GDP growth

Having said that, the FCI_t^{WS} and FCI_t^{PC} did diverge from each other occasionally, reflecting the differences in the underlying methodology and the selected component financial variables. For instance, after the rebound in 1998Q4, FCI_t^{PC} plunged again to low levels reached at the height of the AFC, before continuing to pick up sharply and peak in 2002Q1. Meanwhile, FCI_t^{WS} also dropped initially, but the magnitude of the decline as well as the subsequent fluctuations was comparatively moderate. As shown later in the section, the

Note: FCI is in units of standard error. Sources: C&SD, HKMA staff estimates.

divergence in this episode can be partly attributed to the dynamics of variables including swap spread, mortgage rate spread, office and retail property prices, all of which were components of FCI_t^{PC} but not FCI_t^{WS} .

Table 1 shows that the sharp plunges of FCI_t^{WS} during crisis periods were mainly driven by stock prices, residential property prices and stock market volatility, reflecting the ability of the asset markets to signal sharp changes in economic activity. During tranquil periods, the fluctuation of FCI_t^{WS} could mainly be attributed to the dynamics of property prices, reflecting the strong influence of Hong Kong's property market on the real economy (Wu et al. (2016), BIS (2016)).

	Average contributions to changes in FCI per quarter						
Period	3-month HIBOR	HKD domestic loans	HKD REER	Residential property prices	Stock prices	Stock market volatilities	Interest rate spreads
Pre-AFC (1991Q3 - 1997Q2)	-0.01	0.05	-0.04	0.20	0.09	0.07	-0.01
AFC (1997Q3 - 1998Q4)	-0.02	-0.10	-0.04	-0.78	-0.21	-0.49	-0.15
Pre-GFC (1999Q1 - 2008Q2)	0.00	-0.08	0.05	-0.10	0.00	0.06	0.01
GFC (2008Q3 - 2009Q1)	0.06	-0.12	-0.12	-0.52	-0.63	-0.63	-0.33
Post-GFC (2009Q2 - 2016Q2)	-0.02	-0.03	-0.01	0.10	-0.02	0.11	0.06

Table 1: Contribution to changes in FCI_t^{WS}

Source: HKMA staff estimates.

The contribution of individual components to FCI_t^{PC} are grouped according to its nature and the results are shown in Table 2. The sharp plunges of the FCI_t^{PC} during crisis periods were mainly driven by stock market volatilities and interest rate spreads, reflecting worsened market sentiments or heightened risks. Interest rate spreads play a more important role in driving FCI_t^{PC} than FCI_t^{WS} as the former included a large number of interest rate spreads components. As mentioned previously, such spreads were also responsible for the plunge of the FCI_t^{PC} after 1998Q4 and therefore the divergence between FCI_t^{PC} and FCI_t^{WS} during the period. Meanwhile, property prices still remained important to the dynamics of FCI_t^{PC} throughout the sample period, while measures of money and credit were also important contributors.

	Average contributions to changes in FCI per quarter							
Period	Interest rates	Money and Credit	Delinquency	Property prices	Stock market	Stock market volatilities	Interest rate spreads	Others
Pre-AFC (1991Q3 - 1997Q2)	0.02	0.08	0.00	-0.12	0.02	0.02	-0.03	-0.01
AFC (1997Q3 - 1998Q4)	-0.06	-0.18	-0.01	-0.23	0.09	-0.27	-0.60	0.00
Pre-GFC (1998Q4 - 2008Q2)	-0.01	-0.08	0.02	-0.04	-0.02	0.00	-0.20	-0.02
GFC (2008Q3 - 2009Q1)	-0.03	-0.09	0.01	0.02	-0.17	-0.43	-0.63	-0.04
Post-GFC (2009Q2 - 2016Q2)	0.00	0.04	0.00	0.12	-0.01	0.10	0.38	0.01

Table 2: Contribution to changes in FCI_t^{PC}

Source: HKMA staff estimates.

IV. EVALUATION OF THE INDEXES

To assess the performance of the FCIs in tracking and forecasting real GDP growth on both quarter on quarter and year on year basis, we conduct both in-sample and pseudo-out-of-sample tests using the following growth forecasting model similar to Osorio et al. (2011) and Wacker et al. (2014):

$$g_{t+h} = \alpha + \sum_{i=1}^{p} \beta_i g_{t+1-i} + \gamma F C I_t^X + \omega_t$$

Where g_{t+h} is either the quarter-on-quarter or year-on-year growth of real GDP at $h \le 2$ quarters ahead, and $X \in WS, PC$. Based on Schwarz Information Criteria (SIC), p is set to be equal to one for the quarter-on-quarter growth case and four for the year-on-year growth case. For the year-on-year case, given that the FCIs are constructed with reference to the quarter-on-quarter real GDP growth, we take the four-quarter moving average of the FCIs as the predictors so that everything is on a year-on-year basis.

For the in-sample test, we measure the performance of the FCIs based on the adjusted R-squared and the t-statistics of the FCIs' coefficients in the growth forecasting model. The AR(1) and AR(4) models, where γ is set to be equal to zero, are used as benchmarks respectively for the quarter-on-quarter and year-on-year cases.

For the quarter-on-quarter case, Table 3 shows that both the models with FCI_t^{ws} and FCI_t^{PC} yield much higher adjusted R-squared compared to the AR(1) model in the one-quarter ahead horizon, with FCI_t^{ws} outperforming all other models. The coefficient of both FCI_t^{WS} and FCI_t^{PC} are also statistically significant at the 5% confidence level. Moving to the two-quarter ahead horizon,

<u>Model</u>	h = 1		h = 2			
	Adjusted	t-statistics of	Adjusted	t-statistics of		
	R-squared	the FCI's	R-squared	the FCI's		
		coefficients		coefficients		
1. AR(1)	0.090	n.a.	0.072	n.a.		
2. FCI_t^{WS}	0.261	4.871**	0.072	1.123		
3. FCI_t^{PC}	0.170	3.238**	0.075	1.340		

however, both FCI_t^{WS} and FCI_t^{PC} do not perform well.

Table 3: In-sample tests: qoq real GDP growth

** indicates that the coefficient is statistically significant at 5% confidence level. Source: HKMA staff estimates.

Table 4 shows that FCI_t^{WS} and FCI_t^{PC} also improve the goodness of fit of the model in the year-on-year case, with both FCI_t^{WS} and FCI_t^{PC} yielding higher adjusted R-squared comparing to the AR(4) model in both one- and two-quarter ahead horizons. Nevertheless, except for FCI_t^{WS} in the one-quarter ahead horizon, the coefficients of the FCIs are not statistically significant.

<u>Model</u>	h = 1		h = 2			
	Adjusted	t-statistics of	Adjusted	t-statistics of		
	R-squared	the FCIs'	R-squared	the FCIs'		
		coefficients		coefficients		
1. AR(4)	0.735	n.a.	0.467	n.a.		
2. FCI_t^{WS}	0.777	2.236**	0.543	1.056		
3. FCI_t^{PC}	0.769	1.543	0.542	1.179		

Table 4: In-sample tests: yoy real GDP growth

** indicates that the coefficient on the FCI is statistically significant at 5% level. Source: HKMA staff estimates.

As for the pseudo-out-of-sample test, we assess the forecasting performance of the above growth forecasting model using the root mean squared errors (RMSEs) calculated over the forecasting period of 2008Q1–2016Q2. As benchmarks, we compare the forecasting performance of the FCIs with: (1) the AR(1) model for the quarter-on-quarter case and the AR(4) model for the year-on-year case and, (2) the random walk model, where p and β_1 are set to be equal to one while α and γ are set to be equal to zero, for both the quarter-on-quarter and year-on-year cases. To facilitate comparison, the RMSEs of each model are expressed relative to that of the AR model. The results are shown in Table 5.

For the quarter-on-quarter case, the random walk model is the worst performing model, with its RMSEs being higher than that of the AR(1) model as well as the FCIs over all forecasting horizons considered. Both FCI_t^{WS} and FCI_t^{PC} can outperform the AR(1) model in the one-year ahead horizon but not in the two-year ahead horizon, with FCI_t^{WS} performing better than FCI_t^{PC} in the one-year ahead horizon and vice versa in the two-year horizon.

<u>Model</u>	h = 1	h = 2
1. AR(1)	1.00	1.00
2. Random Walk	1.22	1.24
3. FCI_t^{WS}	0.83	1.15
4. FCI_t^{PC}	0.97	1.09

Table 5: Pseudo-out-of-sample tests: qoq real GDP growth

Source: HKMA staff estimates.

For the year-on-year case, both FCI_t^{WS} and FCI_t^{PC} can outperform the AR and the random walk model in the one- and two-year ahead horizons (Table 6). Again, FCI_t^{WS} performs better than FCI_t^{PC} in the one-year ahead horizon and vice versa in the two-year, although the difference in the RMSEs becomes smaller than those for the quarter-on-quarter case.

		5
<u>Model</u>	<i>h</i> = 1	<i>h</i> = 2
1. AR(4)	1.00	1.00
2. Random Walk	1.13	1.23
3. FCI_t^{WS}	0.94	0.96
4. FCI_t^{PC}	0.98	0.94

 Table 6: Pseudo-out-of-sample tests: yoy real GDP growth

Source: HKMA staff estimates.

Altogether, the in-sample and the pseudo-out-of-sample forecasting power tests indicate that the FCIs are stronger than simple statistical models in forecasting real GDP growth in at least the one-quarter ahead horizon. This, together with the FCIs' usefulness in tracking the overall domestic financial conditions, means that the indexes could provide much value-added to our existing macro-financial surveillance toolkits.

V. CONCLUSION

Given the role of financial variables in affecting economic activity and transmitting shocks, we construct FCIs for Hong Kong so as to provide a summary measure for assessing the overall financial conditions and their implications for future economic activity. We find that the FCIs constructed under two different approaches broadly share the same pattern, tightening materially during the AFC and the GFC, and loosening after the implementation of quantitative easing in the US. In the face of heightened global financial market volatility, the FCIs tightened again during 2015H2-2016H1. Decomposition analysis shows that the sharp plunges of the FCIs during crisis periods were mainly driven by domestic asset prices and volatilities, reflecting the ability of the asset markets to signal sharp changes in future economic activity. During tranquil periods, the dynamics of the FCIs were driven mainly by domestic property prices, reflecting the strong influence of the property market on the real economy. Our statistical tests indicate that the FCIs can forecast real GDP growth better than simple statistical models up to two guarters ahead. The FCIs are therefore useful tools for macro-financial surveillance of Hong Kong.

REFERENCES

- Bank for International Settlements (2016), "Inflation Mechanism and Monetary Policy Perspectives from Hong Kong", forthcoming.
- Estrella, Arturo (2005), "Why does the Yield Curve Predict Output and Inflation?", Economic Journal, Vol 115, Issue 505, Pages 722–744, 2005.
- Hatzius, Jan, Peter Hooper, Federic Mishkin, Kermit Schoenholtz and Mark Watson (2010), "Financial Condition Indexes: a Fresh Look after the Financial Crisis", NBER Working Paper 16150, 2010.
- IMF (2015), Regional Economic Outlook: Asia and Pacific, April 2015.
- Osorio, Carolina, Runchana Pongsaparn and D. Filiz Unsal (2011), "A Quantitative Assessment of Financial Conditions in Asia," IMF Working Paper 11/170, 2011.
- Pesaran, Hashem and Yongcheol Shin (1998), "Generalized Impulse Response Analysis in Linear Multivariate Models," Economic Letters Vol. 58, Issue 1, Pages 17–29, 1998.
- Wacker, Konstantin, David Lodge and Giulio Nicoletti (2014), "Measuring Financial Conditions in Major Non-Euro Area Economies," ECB Working Paper No. 1743, 2014.
- Wu, Tommy, Michael Cheng and Ken Wong (2016), "A Bayesian Analysis of Hong Kong's Housing Price Dynamics", HKMA Research Memorandum, forthcoming.

APPENDIX: COMPONENT VARIABLES OF THE FCI USING PC APPROACH

Variables	Classification	Starting date	Trans formation
10-year EFN/HKGB yield	Interest rates	1996Q4	Level difference
3-month HIBOR	Interest rates	1982Q1	Level difference
Base rate/3-month EFB yield spread	Interest rate spreads	1998Q2	Level
2-year EFN/3-month EFB yield spread	Interest rate spreads	1991Q3	Level
10-year EFN/HKGB/2-year EFN yield spread	Interest rate spreads	1996Q3	Level
Average mortgage interest rate/ 10-year EFN/HKGB yield spread	Interest rate spreads	1996Q3	Level
3-month HIBOR/3-month EFB yield spread	Interest rate spreads	1991Q2	Level
2-year HKD interest rate swap/2-year EFN yield spread	Interest rate spreads	1992Q2	Level
1-year HIBOR/1-month HIBOR spread	Interest rate spreads	1990Q4	Level
HKD REER	Others	1985Q1	Log 1st difference
Residential property price index	Property prices	1980Q1	Log 1st difference
Office space price index	Property prices	1980Q1	Log 1st difference
Retail space price index	Property prices	1980Q1	Log 1st difference
Flatted factory space price index	Property prices	1980Q1	Log 1st difference
Hang Seng Index	Stock market	1980Q1	Log 1st difference
Realised volatility of HSI	Stock market voliatilities	1980Q1	Level
Realised volatility of D-SIBs' stock prices	Stock market voliatilities	1986Q1	Level
Seasonally adjusted HKD M1	Money and Credit	1984Q4	Log 1st difference
HKD domestic credit	Money and Credit	1980Q3	Log 1st difference
Credit card receivables	Money and Credit	1990Q4	Log 1st difference
Household loans	Money and Credit	1990Q4	Log 1st difference
Household loans/bank assets	Money and Credit	1990Q4	Log 1st difference
Property related loans/bank assets	Money and Credit	1990Q4	Log 1st difference
Outstanding amount of HKD debt instruments, other than EFBN: Less Than 3 Years	Money and Credit	1995Q3	Log 1st difference
New issues of HKD debt instruments, other than EFBN: Less Than 3 Years	Money and Credit	1995Q3	Log 1st difference
HKEX Market Capitalization	Stock market	1995Q2	Log 1st difference
HKEX Market Capitalization/GDP	Stock market	1995Q2	Log 1st difference
Price of crude oil relative to 2 years moving average ratio	Others	1984Q3	Level
HSI Finance/HSI Index (relative to 2-year moving average)	Stock market	1994Q1	Level
Mortgage loans delinquency ratio	Delinquency	1998Q3	Level difference
Credit card loans delinquency ratio	Delinquency	1996Q1	Level difference

Table A1: Component variables of FCI_t^{PC}

Sources: C&SD, HKMA, CEIC, HKMA staff estimates.