
INTL Technology Services LLC

Providing end-to-end authentication for Alliance Access / Entry Users

LAU Authenticator provides complete end-to-end authentication for FIN Format message file
transmission from a back-office application to SWIFT’s Alliance Access / Entry.

Truly end-to-end. The product uses SWIFT’s local message authentication method, LAU, which is based
on the industry standard algorithm HMAC-SHA256 and is the only authentication method supported
by Alliance Access / Entry for transmission of message files to SWIFT.

How it works. The LAU authentication consists of adding a digital Signature calculated using the
message and a pair of keys that are uniquely defined for each communicating pair of applications (i.e.
back office and Alliance Access / Entry). The LAU key consists of 32 printable characters entered as
two 16-character strings. This allows users to have dual control over the maintenance of these keys.

The back-office application will drop a file of unauthenticated FIN messages into an input folder. LAU
Authenticator will pick up the file from this input folder, process the FIN message to create an RJE,
DOS-PCC or XMLv2 format message, calculate the Signature using the keys and create the Signed
and encoded message and drop it into an output folder or MQ queue for onward transmission to
the Alliance Access / Entry. If there are multiple messages in the file, a signature is created for each
payment message.

Once the 24-bit Signature is calculated and added to the output message, if any part of any message
in the file is changed, the payment will be rejected by the Alliance Access / Entry. You can set Alliance
Access / Entry to reject the entire file of messages or only the payments where there was a problem.
Alliance Access / Entry will reject the entire payment (or file) which will not be available for any
further processing within Alliance Access / Entry.

Customizable features. LAU Authenticator provides a graphical user interface that allows each user
to define their own unique key and validates the key to ensure that the complexity rules defined by
SWIFT are followed. It enables the user to change the keys periodically to ensure that the keys remain
secure.

LAU Authenticator

For more information, contact infoswift@intlfcstone.com
LEARN MORE

SWIFT is the trade name of S.W.I.F.T. SCRL. The following are registered trademarks of SWIFT: SWIFT, the SWIFT logo, the Standards Forum logo, 3SKey,
Innotribe, Sibos, SWIFTNet, MyStandards, SWIFT Institute, and Accord. Other products, services, or company names mentioned in this material are trade
names, trademarks, or registered trademarks of their respective owners.
INTL Technology Services LLC is a subsidiary of INTL FCStone Inc. INTL FCStone Inc. (“INTL) is a public company based in the United States listed on the
NASDAQ stock exchange (symbol “INTL”) and regulated by the US Securities and Exchange Commission. All financial information and filings are public and
can be viewed on the website of the Securities and Exchange Commission or on our website http:// www.intlfcstone.com.
No part of this material may be copied, photocopied or duplicated in any form by any means or redistributed without the prior written consent of INTL
FCStone Inc. © 2019 INTL FCStone Inc. All Rights Reserved

INTL Technology Services LLC

Monitoring and archiving. Our tool maintains a log of transmissions and can be configured to send
automatic email notifications in the case of failure or errors while processing FIN message to its
transformed output format Signed and encoded document. Messages can also be archived before and
after transformation/processing.

 LOCAL AUTHENTICATION PROCESS FLOW

SA
A

 S
er

ve
r

LA
U

 A
pp

 Z
on

e
B

O
 A

pp
lic

at
io

n

Source FIN Message

Input Directory/

Input MQ Queue
LAU Program

Log Directory

Output Directory/
Output MQ Queue

Local Authentication Success

Further Processing to SWIFT

Software Distribution. LAU Authenticator 2.0 is distributed as a packaged Java Jar file along with other
configuration files. It can be installed on most operating systems supporting java such as Microsoft
Windows operating system, Linux, Solaris etc., and requires the Java runtime environment (JRE 1.8 or
higher).

